Multimediaservices involve processing, transmission and retrieval of multiple forms of information. Multimedia services have gained momentum in the past few years due to the easy availability of computing power and storage media. Societyisdemandinghuman-likeintelligentbehaviour,suchasadaptationand generalization, from machines every day. With
Digital watermarking has recently emerged as a solution to the problem of providing guarantees about copyright protection of digital images. However, several problems related to the robustness of invisible watermarking techniques from malicious or non-malicious attacks still remain unsolved. Visible watermarking is an effective technique for preventing unauthorized use of an image, based on the insertion of a translucent mark, which provides immediate claim of ownership. Digital watermarking technology primarily joins the rightful owner of totem to the protected media. Once the media are suspected to be illegally used, an open algorithm can be used to extract the digital watermark, for the purpose of showing the media's ownership. A reversible visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to recover the original image without loss. In this paper, we propose a reversible visible watermark method, which embeds QR code into gray-scale images to create a visible watermark. Not using complex calculations, this paper tries to simply change the pixel value to achieve the digital watermark. Furthermore, a reversible steganographic method is used to embed the watermarking information, which can be used to recover the original images, into the watermarking images. To read the full-text of this research, you can request a copy directly from the authors.... Hsu & Wu & Wang 2012 afirmam que o sistema QR code tornou-se popular fora da indĂșstria devido Ă  sua rĂĄpida legibilidade e grande capacidade de armazenamento em comparação aos cĂłdigos de barras padrĂ”es. Segundo os autores, o sistema consiste em mĂłdulos pretos arranjados em quadrado em um fundo branco e Ă© composto de quatro tipos padronizados de modos de dados, a saber alfanumĂ©ricos; byte; kanji ou virtualmente qualquer tipo de dados. ...... Segundo os autores, o sistema consiste em mĂłdulos pretos arranjados em quadrado em um fundo branco e Ă© composto de quatro tipos padronizados de modos de dados, a saber alfanumĂ©ricos; byte; kanji ou virtualmente qualquer tipo de dados. Os usuĂĄrios que levam a cĂąmera do celular ao cĂłdigo de barras, por meio um aplicativo decodificador, podem obter informaçÔes diretamente, como URLs, dados de texto e imagens, com uma economia significativa de tempo Hsu & Wu & Wang 2012. O cĂłdigo QR consome menos espaço para grandes informaçÔes em comparação com qualquer outra tecnologia Kavitha & Shan, 2017. ...... Dentre as vantagens do QR Code, os autores citam alta codificação de dados e a capacidade de correção de erros, pois os dados podem ser restaurados mesmo se o QR Code for parcialmente sujo ou danificado. Hsu & Wu & Wang 2012 afirmam em seu estudo que a marca d'ĂĄgua digital invisĂ­vel emergiu recentemente como solução para o problema de fornecer garantias sobre direitos autorais em imagens digitais, mas mesmo assim elas ainda sofrem ataques maliciosos de violação. Nesse sentido, propĂ”em um mĂ©todo de marca d'ĂĄgua visĂ­vel reversĂ­vel, que incorpora o cĂłdigo QR em imagens em escala de cinza. ...The objective of this work was to consolidate the studies regarding RFID and QR code technologies in the context of military organizations. RFID and QR code are technologies that aim to contribute to the control and management of information in search of optimizing organizational processes. Thus, understanding the current state of the art on these technologies are important to know the key contributions and challenges. This study is an exploratory, quantitative approach, based on the Theory of Consolidated Analytic Meta Approach, through a systematic review of the literature. A total of 208 articles were analyzed, of which 60 were from the Web of Science database and 148 from Scopus. The results revealed that the subject has been gaining importance in the last years, due to the increasing number of citations related to the theme. From the analysis of the key words and the main articles on the subject it was also noticed that the applications of RFID technology have been much more widespread than the QR code in the military scope. Among the main applications perceived is a wireless system of identification, with the aid of RFID technology, that contributes to security, logistics, management and communication in the military field. In order to deepen the analysis of the bibliographic research, maps were made with the co-citations and bibliographic coupling for the two databases. In addition, a table was presented summarizing the main advantages and disadvantages of RFID and QR code applications in the military mentioned in the main articles.... Consequently, the concept of "Information Hiding" [1] has been proposed. Then theory of Cryptography [2] and watermarking [3] has been developed. But in the present days, thanks to the rising computational supremacy, regular cryptographic and watermarking algorithms have been established to be evidence for weak point against mathematical and statistical methods. ...... Here apply it in Cover and Stego images to see the difference between these two images. The Correlation shows in equation 3. ... Dr- Indradip BanerjeeInternet expertise's are now carrying a imperative responsibility in our habitual living. It has the advantages along with the disadvantages; it can generate the requirements of information hiding technology for maintaining the secrecy of the secret information. Steganography is most fashionable information hiding technique in modern day situation, which comes from a Greek word " Î”ÎłÎ±Îœ-, ÎłÏÎ±Ï†-ΔÎčΜ " means " covered or hidden writing ". Extensive capacity of effort has been carried out by different researchers in this ground. In this contribution, a novel special domain image Steganography method has been proposed which has been design based on prime factor calculation on pixel intensity.... QR codes have been utilized in watermarking techniques for years. They were either embedded in arbitrary images [HWW12] or vice versa [VR12]. For the latter case, data was embedded in the QR code, which acted as a container to hide information [HCF11,BMT13]. ...QR code is a 2D matrix barcode widely used for product tracking, identification, document management and general marketing. Recently, there have been various attempts to utilize QR codes in 3D manufacturing by carving QR codes on the surface of the printed 3D shape. Nevertheless, significant shape editing and modulation may be required to allow readability of the embedded 3D-QR-codes with good decoding accuracy. In this paper, we introduce a novel QR code 3D fabrication framework aimed at unobtrusive embedding of 3D-QR-codes in the shape hence introducing minimal shape modulation. Essentially, our method computes bi-directional carvings in the 3D shape surface to obtain the black-and-white QR pattern. By using a directional light source, the black-and-white QR pattern emerges as lighted and shadow casted blocks on the shape respectively. To account for minimal modulation and elusiveness, we optimize the QR code carving shape geometry, visual disparity and light source position. Our technique employs a simulation of lighting phenomena through carved modules on the shape to ensure adequate contrast of the printed 3D-QR-code.... The robust watermark inserted into the region of interest ROI based on Integer Wavelet Transform IWT and the secondary watermark is embedded by the LSB substitution for tamper localization and recovery. A visual watermark method of implanting Quick Response QR Code image onto the grayscale image [10] is proposed. The insertion method changes the pixel values by adding positive random values to them, such that the altered results are visible. ...P. SivananthamaitreyP. Rajesh KumarDual digital watermarking has emerged as a successful solution for copyright protection, tamper detection and localization. However, several problems related to the robustness, capacity, tampered area detection still mystifying. This paper presents a high capacity dual watermarking mechanism for digital colour images. An invisible robust watermark is embedded in the Green component of the host image by using a hybrid combination of Stationary Wavelet Transform SWT and Singular Value Decomposition SVD for copyright protection. A fragile invisible watermark based on the Least Significant Bit LSB replacement approach is embedded in the Blue composition of the image for tamper detection and localization. The proposed technique focuses on robustness and imperceptibility while maximizing embedding capacity that makes this technique a multipurpose watermarking scheme.... " Information Hiding " term is the catching focuses now a days for the safety and security. Subsequently the philosophy of Cryptography[1]and watermarking[2]has been urbanized. The word " Security " is a very catching term from prehistoric age and the significance has been changed in contemporary age, because the research in reverse engineering techniques has been increased the processing power, most important race between researches in cryptanalysis[3]and watermarking detection[4]. ...... Safety and security of communication system proposed "Information Hiding". Then theory of Cryptography [2] and watermarking [3] has been developed. The word "Security" is not the same like some years back, because the research in reverse engineering techniques has been increased the processing power, most important race between researches in cryptanalysis [4] and watermarking detection [5]. ...... The watermarking images with QR codes has already drawn the attention of the research community in several works such as [7,8,9,10,11,12,13,14]. Moreover, there is an application of QR code embedding in audio [15]. ...With the continuous adoption of the web and the increase of connection speeds, people are more and more sharing multimedia content. The main problem that is created by this approach is that the shared content become less and less search-friendly. The information that is shared, cannot be easily queried, so a big part of the web becomes inaccessible. To this end, there is a big shift towards adopting new metadata standards for image and video that can efficiently help with queries over image and videos. In this work we extend our proposed method of embedding metadata as QR codes in gray scale images, to color video files with a slightly modified algorithm to make the decoding faster. We then examine the experimental results regarding the compressed file size, using a lossless encoding and the distortion of the frames of the video files. Storing the metadata inside the multimedia stream with QR format has several advantages and possible new uses that are going to be Kumari Chirag PatelIn cloud computing data and applications have been maintained using remote servers that is distributed and it utilizes internet. The main advantage of using cloud computing is that it allow user to use applications over the internet and also share files at any computer over the internet. The use of cloud computing has tremendous impact over the IT industry and also it provides efficient use of resources like bandwidth, storage and processing. As the growth of cloud computing increases many users interact with each other and security issues are arising. The cloud computing growth is hampered by these security issues. There are risks of data breach, data loss, unauthorized access, denial of services etc. In this paper the analysis cloud computing security issues and also surveyed various techniques that are used to handle cloud has been applied in the medical field that is used to enhance the safety of medical information. QR Code is used in this research to store medical image data and insert a watermark into the image using the Least Significant Bit - LSB method that can insert data into the bit sensitive area. Watermark insertion using the LSB method does not affect the image size and cannot be seen by the eye. This method insert a watermark that is distributed throughout the image. The experimental have rotated the image in 90 degrees in a clockwise direction, rotated 90 degrees in a counterclockwise direction and rotated in the opposite direction. The results of the experiment showed that the rotation of the image in the above direction did not affect the reading of the patient’s injury data from the QR Code. Nobuyuki TerauraWe propose a counterfeit detection system that uses a double-coding procedure to encode two-dimensional code. The system uses ordinary black ink, which absorbs infrared rays, and special black ink, which transmits infrared rays. Because special black is copied as ordinary black when replicated by a copying machine, the double-encoded data is lost, thereby enabling the item identified by the code to be identified as a counterfeit. The double-coded two-dimensional code is decoded by comparing the images obtained under white light and infrared radiation. If the data to be double-coded is encrypted, the counterfeiter cannot forge the double-coded two-dimensional code. Duplication can also be detected by using the data to be double-coded as encrypted data of the serial M. Gaikwad K. R. SinghThe grow of smart phone and mobile devices market, has created a new set of opportunities for companies to develop new publicity strategies. One of the most widespread forms of engaging mobile users from printed materials is based on the use of QR codes, which have been adopted for many different applications such as accessing web sites or downloading premium content. In this research work, we will be performing embedding QR code into color image and hiding information using QR code, in order to make them visually appealing to the user while maintaining acceptable decoding robustness. In contrast to previous approaches the methods presented here allows to automatically embedding QR codes into color, grayscale or binary images. These embedding are designed to be compatible with standard decoding applications and can be applied to any color image with full area coverage. The embedding problem is solved by the integration of halftoning method. Finally, we show experimental results of halftoning of color image, embedded QR code image in color image and decoded QR code image from color is connected to the internet with a sensor for understanding the property of the thing for which a two-dimensional code was used. Two-dimensional codes can play the role of connecting cyberspace to physical space, and can play a significant role in the so-called Internet of Things. Moreover, the advancement of machine vision is progressing with machine-to-machine communication. On the other hand, there is also private information, such as personal information, that should not be known by others. Current two-dimensional codes have become ubiquitous and express the cell using two colors white and black. The cell expresses white or black in one bit, and there is no confidentiality available. In response to this, we propose an addition to the existing part that can be read with conventional equipment. We propose a 'secrecy part' that cannot be read without a decryption key. Further, we propose a method for rendering these two-dimensional codes compatible with black-and-white codes. In order to generate the secrecy part, it is necessary to transform a cell into several bits. A multicolor method and a multiple-region method are used to transform the code into several bits. An evaluation of the multi-valued cells in the two-dimensional codes here proposed, with a read verification and compatibility along with the added secrecy part, was carried out using a smartphone with successful Zhang Tiegang GaoQuick Response Code QR Code has become an important entrance of O2O Online to Offline in the era of mobile internet. Many applications, such as transformation of URLs, the descriptions of these images, and so on can be realized through embedding QR Code into images. However, the embedding of QR Code may destroy some image details in the corresponding area, which is annoying, especially in these applications that need high precision. The reversible recovery of original image is of importance. A reversible visible watermarking scheme is proposed for embedding QR Code into images. One can decode the information that is encoded in the QR Code and reversibly recover the original image after the QR Code is scanned successfully. Optimization has been achieved both by utilizing the features of QR Code when encoding and decoding in the visible watermarking period and by utilizing the blocking, scanning, and preprocessing of information in the reversible data hiding period. Experimental results have demonstrated the validity and efficiency of the proposed scheme. Better image quality has been achieved by the proposed scheme compared with existing QR code based blind digital image watermarking technique with an attack detection feature is described here. The technique describes a key based framework to incorporate image, server port address or website address as watermark data; which increases the extended usability of the embedded data and the adaptability of the verification application. The watermarking problem is formulated as a signal communication problem with watermark data representation, embedding of watermark and attack detection as a source encoding, channel encoding and attenuation detection problems respectively. The mathematical aspects of the respective signal processing problems are extended to digital image watermarking with sufficient background support. The use of QR code ensures extended usability, while the application specific watermark data achieves adaptability of the verification application. The QR code is embedded into the attack resistant HH component of 1st level DWT domain of the cover image and to detect malicious interference by an attacker, a unique image registry code generated from the high frequency structural components of the stego-image is used. The key based approach and the attack resistant embedding domain makes this method robust against visually invariant attacks. The testing results show the compliance of the method with all the proposed WangThis paper presents a novel image trading mechanism based on hybrid watermarking techniques. The removable visible watermarking technique is used to provide the safe preview of the protected media. The fingerprinting is used to trace the illegal distributor. Two kinds of watermarking techniques embed watermarks in DCT domain in order to conform to compression techniques. Experimental results show that image trading mechanism based on hybrid watermarking techniques can protect the image with high technologies are now charring a vital role in our day to day life. It has the advantages along with the disadvantages also, which in term generates the requirements of information hiding technology for maintaining the secrecy of the secret information. Extensive amount of work has been carried out by different researchers in this field. In this paper, a novel special domain image Steganography method has been proposed which has been design based as an extension of the PMM method. C 2013 The Authors. Published by Elsevier novel reversible data hiding algorithm, which can recover the original image without any distortion from the marked image after the hidden data have been extracted, is presented in this paper. This algorithm utilizes the zero or the minimum points of the histogram of an image and slightly modifies the pixel grayscale values to embed data into the image. It can embed more data than many of the existing reversible data hiding algorithms. It is proved analytically and shown experimentally that the peak signal-to-noise ratio PSNR of the marked image generated by this method versus the original image is guaranteed to be above 48 dB. This lower bound of PSNR is much higher than that of all reversible data hiding techniques reported in the literature. The computational complexity of our proposed technique is low and the execution time is short. The algorithm has been successfully applied to a wide range of images, including commonly used images, medical images, texture images, aerial images and all of the 1096 images in CorelDraw database. Experimental results and performance comparison with other reversible data hiding schemes are presented to demonstrate the validity of the proposed this paper, we present two new methods for authentication of digital images using invertible watermarking. While virtually all watermarking schemes introduce some small amount of non-invertible distortion in the image, the new methods are invertible in the sense that, if the image is deemed authentic, the distortion due to authentication can be removed to obtain the original image data. Two techniques are proposed one is based on robust spatial additive watermarks combined with modulo addition and the second one on lossless compression and encryption of bit-planes. Both techniques provide cryptographic strength in verifying the image integrity in the sense that the probability of making a modification to the image that will not be detected can be directly related to a secure cryptographic element, such as a has function. The second technique can be generalized to other data types than bitmap to quantization error, bit-replacement, or truncation, most data embedding techniques proposed so far lead to distortions in the original image. These distortions create problems in some areas such as medical, astronomical, and military imagery. Lossless watermarking is an exact restoration approach for recovering the original image from the watermarked image. In this paper we present a novel reversible watermarking technique with higher embedding capacity considering the Human Visual System HVS. During embedding we detect the textured blocks, extract LSBs of the pixel-values from these textured blocks considering the HVS and concatenate the authentication information with the compressed bit-string. We then replace the LSBs of the textured blocks considering the HVS with this bit-string. Since we consider the HVS while extracting LSBs and embedding the payload, the distortions in the resulting watermarked image are completely reversible and imperceptible. We present experimental results to demonstrate the utility of our proposed visible watermark may convey ownership information that identifies the originator of image and video. A potential application scenario for visible watermarks was proposed by IBM where an image is originally embedded with a visible watermark before posting on the web for free observation and download. The watermarked image which serves as a "teaser." The watermark can be removed to recreate the unmarked image by request of interested buyers. Before we can design an algorithm for satisfying this application, three basic problems should be solved. First, we need to find a strategy suitable for producing large amount of visually same but numerically different watermarked versions of the image for different users. Second, the algorithm should let the embedding parameters reachable for any legal user to make the embedding process invertible. Third, an unauthorized user should be prevented from removing the embedded watermark pattern. In this letter, we propose a user-key-dependent removable visible watermarking system RVWS. The user key structure decides both the embedded subset of watermark and the host information adopted for adaptive embedding. The neighbor-dependent embedder adjusts the marking strength to host features and makes unauthorized removal very difficult. With correct user keys, watermark removal can be accomplished in "informed detection" and the high quality unmarked image can be restored. In contrast, unauthorized operation either overly or insufficiently removes the watermark due to wrong estimation of embedding parameters, and thus, the resulting image has apparent data hiding, distortions are introduced in an original image because of quantization errors, bit-replacement, or truncation at the grayscale limit. These distortions are irreversible and visible which are unacceptable in some applications like medical imaging. However, the reversible watermarking technique overcomes this problem by retrieving the original image from the watermarked image. In this paper, we present a novel reversible watermarking algorithm with a high embedding capacity considering the human visual system HVS. We use the arithmetic coding technique to compress a part of the original image and store the compressed data together with necessary authentication information as the payload. The payload is then embedded within the original image with consideration of the HVS. Due to this, the watermarked image contains no perceptible artifacts. During the extraction phase, we extract the payload, restore the exact copy of the original image and verify the authenticity. Experimental results show that our method provides a higher embedding capacity compared to the other algorithms proposed in the common drawback of virtually all current data embedding methods is the fact that the original image is inevitably distorted due to data embedding itself. This distortion typically cannot be removed completely due to quantization, bit-replacement, or truncation at the grayscales 0 and 255. Although the distortion is often quite small and perceptual models are used to minimize its visibility, the distortion may not be acceptable for medical imagery for legal reasons or for military images inspected under non-standard viewing conditions after enhancement or extreme zoom. In this paper, we introduce a new paradigm for data embedding in images lossless data embedding that has the property that the distortion due to embedding can be completely removed from the watermarked image after the embedded data has been extracted. We present lossless embedding methods for the uncompressed formats BMP, TIFF and for the JPEG format. We also show how the concept of lossless data embedding can be used as a powerful tool to achieve a variety of non-trivial tasks, including lossless authentication using fragile watermarks, steganalysis of LSB embedding, and distortion-free robust based scaling of a watermark image is of paramount importance to make the degree of marking applied variable according to the features of host images. Here. A wavelet domain visible watermarking is proposed. The scaling factors for the pixel based method are adaptively determined by the effect of luminance and local spatial characteristicsIn this paper, we propose a reversible visible watermarking algorithm to satisfy a new application scenario where the visible watermark serves as a tag or ownership identifier, but can be completely removed to resume the original image data. It includes two procedures data hiding and visible watermark embedding. In order to losslessly recover both the watermark-covered and nonwatermark-covered image contents at the receiver end, the payload consists of two reconstruction data packets, one for recovering the watermark-covered region, and the other for the nonwatermark-covered region. The data hiding technique reversibly hides the payload in the image region not covered by the visible watermark. To satisfy the requirements of large capacity and high image quality, our hiding technique is based on data compression and uses a payload-adaptive scheme. It further adopts error diffusion for improving subjective image quality and arithmetic compression using a character-based model for increasing computational efficiency. The visible watermark is securely embedded based on a user-key-controlled embedding mechanism. The data hiding and the visible watermark embedding procedures are integrated into a secure watermarking system by a specially designed user key Jun TianReversible data embedding has drawn lots of interest recently. Being reversible, the original digital content can be completely restored. We present a novel reversible data-embedding method for digital images. We explore the redundancy in digital images to achieve very high embedding capacity, and keep the distortion low. Bian YangZheming LuShenghe SunMany watermarking algorithms have been proposed based on the vector quantization VQ technique, which bases the watermark embedding and extracting schemes on the idea of quantization index modulation QIM. We review in this paper VQ-based watermarking algorithms regarding the reversibility of VQ indices in the compressed domain. Considering the reversibility is usually traded with the compression performance, we propose a new reversible image watermarking algorithm using a modified version of the traditional fast correlation based VQ FCVQ and achieves both higher compression and watermarking performance than other algorithms. The advantages of the proposed modified FCVQ include the desirable compression performance and the independently applicability in the practical case without watermarking. Simulation results demonstrated our proposed algorithm. Comparisons between our algorithm and others are this paper, we propose a new algorithm in reversible data hiding, with the application associated with the quick response QR codes. QR codes are random patterns, which can be commonly observed on the corner of posters or webpages. The goal of QR codes aims at convenienceoriented applications for mobile phone users. People can use the mobile phone cameras to capture QR code at the corner of web page, and then the hyperlink corresponding to the QR code can be accessed instantly. Since QR code looks like random noise and it occupies a corner of the original image, its existence can greatly reduce the value of the original content. Thus, how to retain the value of original image, while keeping the capability for the instant access for webpages, would be the major concern of this paper. With the aid of our reversible data hiding technique, the QR codes can be hidden into the original image, and considerable increase in embedding capacity can be expected. Next, we propose a scheme such that when the image containing the QR code is browsed, the hyperlink corresponding to the QR code is accessed first. Then, the QR code could get vanished and the original image would be recovered to retain the information conveyed therein. Simulation results demonstrate the applicability of the proposed novel reversible data hiding scheme based on invariability of the sum of pixel pairs and pairwise difference adjustment PDA is presented in this letter. For each pixel pair, if a certain value is added to one pixel while the same value is subtracted from the other, then the sum of these two pixels will remain unchanged. How to properly select this value is the key issue for the balance between reversibility and distortion. In this letter, half the difference of a pixel pair plus 1-bit watermark has been elaborately selected to satisfy this purpose. In addition, PDA is proposed to significantly reduce the capacity consumed by overhead information. A series of experiments is conducted to verify the effectiveness and advantages of the proposed Yang Ming-Han TsaiData hiding is an important way of realising copyright protection for multimedia. In this study, a new predictive method is proposed to enhance the histogram-based reversible data hiding approach on grey images. In those developed histogram-based reversible data hiding approaches, their drawbacks are the number of predictive values less to the number of pixels in an image. In these interleaving prediction methods, the predictive values are as many as the pixel values. All predictive error values are transformed into histogram to create higher peak values and to improve the embedding capacity. Moreover, for each pixel, its difference value between the original image and the stego-image remains within ±1. This guarantees that the peak signal-to-noise ratio PSNR of the stego-image is above 48±dB. Experimental results show that the histogram-based reversible data hiding approach can raise a larger capacity and still remain a good image quality, compared to other histogram-based LiuWen-Hsiang TsaiA novel method for generic visible watermarking with a capability of lossless image recovery is proposed. The method is based on the use of deterministic one-to-one compound mappings of image pixel values for overlaying a variety of visible watermarks of arbitrary sizes on cover images. The compound mappings are proved to be reversible, which allows for lossless recovery of original images from watermarked images. The mappings may be adjusted to yield pixel values close to those of desired visible watermarks. Different types of visible watermarks, including opaque monochrome and translucent full color ones, are embedded as applications of the proposed generic approach. A two-fold monotonically increasing compound mapping is created and proved to yield more distinctive visible watermarks in the watermarked image. Security protection measures by parameter and mapping randomizations have also been proposed to deter attackers from illicit image recoveries. Experimental results demonstrating the effectiveness of the proposed approach are also Tsai Yu-Chen HuHsiu-Lien YehIn this paper, a reversible image hiding scheme based on histogram shifting for medical images is proposed. As we know, the histogram-based reversible data hiding is limited by the hiding capacity, which is influenced by the overhead of position information that has to be embedded in the host image. To solve this problem, the similarity of neighboring pixels in the images was explored by using the prediction technique and the residual histogram of the predicted errors of the host image was used to hide the secret data in the proposed scheme. In addition, the overlapping between peak and zero pairs was used to further increase the hiding to the experimental results, a higher hiding capacity was obtained and a good quality stego-image was preserved in the proposed scheme. The hiding capacity provided by the proposed scheme was approximately three times that of the original histogram-based method. Compared to the histogram-based method, the quality of the stego-image improved about dB when the same amounts of secret data were TsaiA novel visible watermarking algorithm based on the content and contrast aware COCOA technique with the consideration of Human Visual System HVS model is presented in this study. In order to determine the optimal watermark locations and strength at the watermark embedding stage, the COCOA visible watermarking utilizes the global and local characteristics of the host and watermark images in the discrete wavelet transform DWT domain. To achieve the best tradeoff between the embedding energy of watermark and the perceptual translucence, the utilization of contrast–sensitive function, noise visible function of perceptual model, and the basis function amplitudes of DWT coefficients are fine tuned, for the best quality of perceptual translucence and noise reduction of the COCOA algorithm. The experimental results demonstrate that COCOA technique not only provides high PSNR values for the watermarked images, but also preserves the watermark visibility under various signal processing operations, especially the watermark removal LuJun-Xiang WangBei-Bei LiuCopyright protection and information security have become serious problems due to the ever growing amount of digital data over the Internet. Reversible data hiding is a special type of data hiding technique that guarantees not only the secret data but also the cover media can be reconstructed without any distortion. Traditional schemes are based on spatial, discrete cosine transformation DCT and discrete wavelet transformation DWT domains. Recently, some vector quantization VQ based reversible data hiding schemes have been proposed. This paper proposes an improved reversible data hiding scheme based on VQ-index residual value coding. Experimental results show that our scheme outperforms two recently proposed schemes, namely side-match vector quantization SMVQ-based data hiding and modified fast correlation vector quantization MFCVQ-based data TsengChi-Pin HsiehFor some applications such as satellite and medical images, reversible data hiding is the best solution to provide copyright protection or authentication. Being reversible, the decoder can extract the hidden data and recover the original image without distortion. In this paper, a reversible data hiding scheme based on prediction error expansion is proposed. The predictive value is computed by using various predictors. The secret data is embedded in the cover image by exploiting the expansion of the difference between a pixel and its predictive value. Experimental results show that our method is capable of providing a great embedding capacity without making noticeable distortion. In addition, the proposed scheme is also applicable to various TsaiLong-Wen ChangA novel reversible visible watermarking algorithm is proposed. It can fully remove the watermark from the visible watermarked image such that the original image can be restored. Pixel values of original image beneath the watermark are mapped to a small range [alpha, alpha + 127] to generate a visible watermarked image. Since the mapping is many-to-one, taking inverse mapping can only approximate the original image. To restore the original image, the difference image of subtracting the approximated image from the original image and other side information are losslessly compressed to be embedded in the visible watermarked image by a reversible data embedding algorithm. We proposed a key-based scheme for the compromise between transparency and robustness. The key is a random variable with discrete normal distribution. In addition, only users with correct key can restore the original image. In the experimental results, we show the transparent degree of watermark can be controlled by the variance of the key. Users with wrong key can not restore the original image from the visible watermarked XiantingPing LingdiLi ZhuoThis paper presents a reversible data hiding scheme. The proposed scheme is based on the difference histogram shifting to spare space for data hiding. Nine basic scan paths are defined, and this means all-directional adjacent pixel differences can be obtained. Due to the fact that the grayscale values of adjacent pixels are close to each other, the all-directional adjacent pixel difference histogram contains a large number of points with equal values. Hence, more data can be embedded into the cover image than previous works based on histogram shifting. Furthermore, multi-layer embedding is used to increase the hiding capacity. In each embedding process, we can embed a large number of data into the cover image by choosing the best scan path and the optimized pixel difference. As experimental results have shown, the cover images are able to embed secret data at an average of the size of the original images while all the PSNR values of the stego images remain larger than 30 novel reversible data hiding scheme based on an integer transform is presented in this paper. The invertible integer transform exploits the correlations among four pixels in a quad. Data embedding is carried out by expanding the differences between one pixel and each of its three neighboring pixels. However, the high hiding capacity can not be achieved only by difference expansion, so the companding technique is introduced into the embedding process so as to further increase hiding capacity. A series of experiments are conducted to verify the feasibility and effectiveness of the proposed watermarking is an important intellectual property rights IPR protection technique for digital images. For some purposes such as contents used in learning web sites or digital libraries, digital images have to be released but illegal reproductions of them are prohibited. Digital images embedded with visible watermarks will contain perceptible but unobtrusive patterns. The embedded patterns should be difficult to be removed unless intensive and expensive human labors are involved. Recently, Huang and Wu have proposed an attacking scheme against visible watermarks. The structure of embedded visible watermark will be seriously destroyed and a perceptually satisfying recovered image can be obtained by this attacking scheme. To improve the robustness of current visible watermarking schemes, a novel scheme that takes advantages of visible watermarking, fragile watermarking and information hiding has been studied in our research. Simulation results demonstrate that our scheme is robust to the present attacking scheme for visible M. AlattarA reversible watermarking algorithm with very high data-hiding capacity has been developed for color images. The algorithm allows the watermarking process to be reversed, which restores the exact original image. The algorithm hides several bits in the difference expansion of vectors of adjacent pixels. The required general reversible integer transform and the necessary conditions to avoid underflow and overflow are derived for any vector of arbitrary length. Also, the potential payload size that can be embedded into a host image is discussed, and a feedback system for controlling this size is developed. In addition, to maximize the amount of data that can be hidden into an image, the embedding algorithm can be applied recursively across the color components. Simulation results using spatial triplets, spatial quads, cross-color triplets, and cross-color quads are presented and compared with the existing reversible watermarking algorithms. These results indicate that the spatial, quad-based algorithm allows for hiding the largest payload at the highest signal-to-noise is composed of the one-bit pixel on the IK. The constitution of Stem starts at Stem = 1. Step 5If S is found, then compress Stem before each addition and stratify If not, repeat step 5Dc= StemStemStep 4To find out S via Stem, which is composed of the one-bit pixel on the IK. The constitution of Stem starts at Stem = 1. Step 5If S is found, then compress Stem before each addition and stratify DC = Stem − Stem,c . If not, repeat step 5. Step 6Construct the payload bit stream as H = SC É· DC. Replace S with H to create I – Rm. REFERENCES Searchthrough millions of free stock photos, art and vector images. Every image is Public Domain or CC0. Free to Download and Free to Use. Popular searches: butterfly cheese clouds renoir (in art) sunset waterfall. Stock. Black and White. Vector. Art. Buat para pecinta fotografi pasti rasanya sangat senang sekali saat karya-karya kamu bisa dinikmati bukan hanya oleh diri sendiri saja tapi juga oleh banyak orang. Untungnya, saat ini kehadiran platform media sosial seperti Instagram bisa dimanfaatkan untuk membagikan karya-karya kamu itu, geng. Namun permasalahannya adalah, banyak orang nggak bertanggung jawab yang asal ambil dan mengakuinya sebagai karya mereka sendiri. Nah, untuk menghindari hal tersebut, kamu bisa lho menambahkan watermark pada hasil foto sehingga nggak sembarang orang bisa mengakuinya. Aplikasi Untuk Membuat Watermark Jika para profesional biasanya menambahkan watermark dengan menggunakan aplikasi-aplikasi yang cukup rumit digunakan oleh orang awam, saat ini ada banyak aplikasi Andorid yang menawarkan fasilitas ini, geng. Nah, berikut adalah beberapa rekomendasi aplikasi Android untuk menambahkan watermark pada foto, geng. 1. Add Watermark on Photos Add Watermark on Photos Apps DOWNLOAD Sesuai dengan namanya, Add Watermark on Photos adalah aplikasi yang memungkinkan pengguna untuk menambahkan watermark pada sebuah foto. Menariknya, aplikasi ini menyediakan fasilitas untuk merancang sendiri desain dari watermark yang akan digunakan, geng. Selain itu, hasil watermark yang sudah dibuat juga bisa kamu simpan sebagai template sehingga bisa digunakan lagi suatu saat kemudian. Keterangan Add Watermark on Photos Developer Simply Entertaining Ulasan Jumlah Pengulas Ukuran 57MB Instal 1M+ Android Minimum 2. Photo Watermark Photo Watermark Apps DOWNLOAD Dikembangkan oleh developer MVTrail Tech, Photo Watermark adalah aplikasi yang memungkinkan kamu untuk menambahkan watermark dengan tingkat transparansi yang bisa ditentukan. Aplikasi Photo Watermark sendiri memiliki tampilan yang cukup sederhana sehingga mudah digunakan oleh orang awam sekalipun. Beberapa fitur yang ditawarkan oleh aplikasi ini sendiri meliputi pengambilan foto dengan kamera, pilihan font dan warna yang beragam, ratusan teks dan stiker .png bawaan, dan masih ada lagi. Keterangan Photo Watermark Developer MVTrail Tech Ulasan Jumlah Pengulas Ukuran 15MB Instal 1M+ Android Minimum 3. Watermark Maker - Add Watermark to Photos Watermark Maker - Add Watermark to Photos Apps DOWNLOAD Menawarkan user interface UI yang sederahana namun tetap menarik, aplikasi Watermark Maker bisa membantu kamu terhindar dari penyalahgunaan foto secara ilegal, geng. Aplikasi Watermark Maker sendiri memiliki banyak sekali fitur yang bisa membantu kamu mempermudah proses pembuatan logo watermark. Beberapa fitur yang menjadi andalannya adalah menyimpan hasil rancangan sebagai template, pilihan font, warna, dan ukuran yang bergam, tanda tangan digital, dan masih banyak lagi. Keterangan Watermark Maker - Add Watermark to Photos Developer Cute Wallpapers Studio Ulasan Jumlah Pengulas 573 Ukuran 21MB Instal 50K+ Android Minimum 4. iWatermark Free Add Watermark Text Logo Pic TM iWatermark Free Add Watermark Text Logo Pic TM Apps DOWNLOAD Telah didownload oleh lebih dari 500 ribu pengguna, aplikasi iWatermark nggak hanya tersedia untuk HP Android saja tapi juga untuk perangkat iOS, Mac, dan Windows. Serupa dengan aplikasi watermark lainnya, iWatermark menyediakan beragam fitur menarik yang dapat memudahkan pengguna saat membuat watermark. Fitur-fitur yang disediakan oleh aplikasi ini sendiri meliputi pilihan font yang beragam, pengaturan transapransi, warna, rotasi, dan lainnya. Sayangnya, aplikasi iWatermark gratis ini akan menempelkan watermark 'Dibuat dengan iWatermark' pada hasil editan, geng. Keterangan iWatermark Free Add Watermark Text Logo Pic TM Developer Plum Amazing Ulasan Jumlah Pengulas Ukuran 10MB Instal 500K+ Android Minimum 5. Video Watermark - Crate & Add Watermark on Videos Video Watermark - Crate & Add Watermark on Videos Apps DOWNLOAD Jika aplikasi-aplikasi sebelumnya berfungsi untuk membuat watermark dalam sebuah foto, maka aplikasi Video Watermark ini berfungsi untuk membuat watermark pada video, geng. Nggak sesulit yang mungkin kamu bayangkan, aplikasi Video Watermark adalah aplikasi yang cepat dan mudah digunakan untuk membuat dan menerapkan watermark pada video. Aplikasi Video Watermark sendiri dibekali dengan fitur-fitur yang serupa dengan aplikasi-aplikasi sebelumnya. Keterangan Video Watermark Developer Z Mobile Apps Ulasan Jumlah Pengulas Ukuran 57MB Instal 500K+ Android Minimum 6. Add Watermark on Videos & Photos Add Watermark on Videos & Photos Apps DOWNLOAD Lagi cari aplikasi yang menawarkan fasilitas untuk menambahkan watermark pada foto dan video sekaligus dalam satu aplikasi? Kalau gitu aplikasi satu ini cocok buat kamu download, geng. Sesuai dengan namanya, aplikasi Add Watermark on Videos & Photos ini memungkinkan kamu untuk menambahkan watermark baik pada file foto ataupun video yang kamu punya, geng. Menariknya, aplikasi Add Watermark on Videos & Photos ini diklaim mampu mempertahankan kualitas resolusi file aslinya sehingga kualitas akan tetap terjamin. Keterangan Add Watermark on Videos & Photos Developer Z Mobile Apps Ulasan Jumlah Pengulas Ukuran 43MB Instal 100K+ Android Minimum 7. Dynamo - Watermark Video Animasi Dynamo - Watermark Video Animasi Apps DOWNLOAD Rekomendasi terakhir aplikasi untuk membuat watermark adalah Dynamo - Watermark Video Animasi, geng. Berbeda dengan aplikasi lainnya, Dynamo menawarkan watermark dalam bentuk animasi bergerak yang bisa kamu atur sendiri desain dan gerakannya. Namun sayangnya, hasil watermark yang dibuat di aplikasi ini hanya bisa ditambahkan ke file video saja, geng. Dengan aplikasi ini, kamu nggak perlu lagi deh install aplikasi edit video yang cara penggunaannya pun lebih ribet. Keterangan Dynamo - Watermark Video Animasi Developer photoshop mobile apps Ulasan Jumlah Pengulas Ukuran 43MB Instal 100K+ Android Minimum Akhir Kata Nah, itulah tadi beberapa aplikasi untuk membuat watermark yang bisa digunakan untuk melindungi hasil karya kamu, geng. Dengan begitu, karya kamu akan aman dari tangan-tangan jahil orang yang asal main comot karya orang. Baca juga artikel seputar Aplikasi Android atau artikel menarik lainnya dari Shelda Audita. ARTIKEL TERKAIT 10 Aplikasi Download Permainan Android Terbaik 2021 Koleksinya Lengkap! Bukalapak Hilang dari Play Store, Ini Aplikasi Jual Beli Online Terbaik Lainnya! 7 Aplikasi Untuk Cek Fungsi HP Paling Akurat, Gak Perlu Diservis! 10 Aplikasi Nakal Menurut Play Store, Awas Jangan Sampe Ke-Download! 7 Aplikasi di HP yang Ternyata Dibuat oleh Artis Terkenal, Ayu Ting Ting Termasuk! 10+ Aplikasi Kompres Foto di HP Ter-Recommended 2022, Bisa Sampai 100 KB Aja! DualSIM Nexian NX-A895. Secara default, SIM pertama lah yang digunakan, terutama untuk video call, sim 1 yang terdeteksi. Kamera 3 MP dan VGA. Full Specs: Nexian NX-A895 | Nexian Cosmo Journey penamaan juga memiliki arti bagi semburan uap tersebut karena menimbulakan nada seperti seekor burung yang bernyanyi, dan semburan kawah kereta
Sale!$ $ or 4 payments of $ with Wizit learn moreOnly 1 left in stock can be backordered Description Additional information Create it your way with the Mont Marte Dual Tip Markers. Featuring 24 rich colours and high-quality ink, these alcohol markers are suitable for designers, illustrators and fine artists. These dual tip markers have a chisel tip and a fine bullet tip to cover all your mark making levelAlcohol-based ink24 rich coloursSuitable for designers, illustrators and fine artistsDual tip chisel and fine bullet tipHigh quality ink can be layered to create depth
HaloBrosis, Jumpa lagi dengan saya, kali ini saya akan membahas sedikit tentang aplikasi yang bisa memberikan logo atau watermark Dual Camera pada foto yang
The smartphone cameras became much impressive and perfect for any occasion to capture the moments with accurate colors in high quality. As each smartphone manufacturers release smartphones with excellent quality cameras, users often tend to show off their devices, especially on social media. One of the best ways to show off your smartphone camera is to add a “Shot on” watermark to your pictures. Thus, you could let your followers know that you are using such a smartphone. Here is how to add shot on the watermark to images in Android. How to add Shot on watermark to images in Android There are many ways you could add watermarks to the pictures you have taken on your smartphone. Considering the apps, the option is available on many beautification apps like Retrica, B612, Youcam Perfect, etc. Here are the methods to add watermark with your smartphone or any smartphone” in Android. Add Shot on watermark on OnePlus 3, 3T, 5, 5T, 6, 6T, 7, 7T, 7Pro & 7T Pro This method is for those who use OnePlus smartphones. With their in-built OnePlus Camera on OxygenOS, it is easier and does not require any extra app installations. Open OnePlus Camera Swipe up the arrow near to the capture button and tap gear icon Settings at the top right corner. Choose “Shot on OnePlus Watermark.” Toggle on the watermark and name if required. Then onwards, you will find Shot on the OnePlus watermark on the pictures you take using the device. Add Shot on watermark on Mi devices If you are having any of the latest XIaomi’s Redmi/Mi series smartphones with a dual camera, you can easily add one to your pictures too. Open the camera in your Mi smartphone. Tap on “Options” at the bottom. Toggle on the “Dual camera watermark.” Add watermark on Huawei/Honor smartphones Unlike smartphones by other OEMs, Huawei and its sub-brand Honor made the watermark as a separate mode on the camera app, instead of an always-on option. So, you need to enter the watermark mode. Open Huawei’s camera app. Swipe from left to right. Tap on “Watermark.” Choose the appropriate watermark from the list, including Shot on Huawei/Honor, time, weather, location, custom text. Add watermark on Vivo smartphones The option is not available on every Vivo smartphone. If you have any of the latest Vivo mid-range/flagship smartphones, including Vivo V9, X21, or NEX, you can do it. Open Camera app. Tap on the gear icon at the top right corner. From the drop-down menu, tap on “Watermark” to enable the Shot on watermark o your Vivo smartphone. Add Shot on the watermark of any smartphone on any device You have gone through the steps to enable an inbuilt watermark option on major branded smartphones. The method described below shows the steps to add shot on watermark from any brand to the pictures take on any Android smartphone. For example, even if your smartphone is not OnePlus, you can quickly add a “Shot on OnePlus” watermark to your pictures, that seems so genuine. Here is how. Download the Shot On Stamp app for the required branded smartphone. Open app > Choose text, name, logo font styles > Add. You can find the complete list of available brands/models from the developer page of Shot On Stamp in Google Play Store from here. Isn’t it so refreshing to post your pictures with branded watermarks? Share your thoughts.
Menurutnya terdapat lima strategi yang harus dipersiapkan perusahaan terlebih dahulu sebelum melakukan eksekusi jangka panjang. Kelima strategi tersebut disampaikan Alamsyah dalam InfoKomputer Tech Gathering "Data-Driven Company, Kunci Memenangkan Kompetisi" yang berlangsung secara virtual, Kamis (7/10/2021). Berikut rangkumannya.
Image watermarking has become an important tool for intellectual property protection and authentication. In this paper a watermarking technique is suggested that incorporates two watermarks in a host image for improved protection and robustness. A watermark, in form of a PN sequence will be called the secondary watermark, is embedded in the wavelet domain of a primary watermark before being embedded in the host image. The technique has been tested using Lena image as a host and the camera man as the primary watermark. The embedded PN sequence was detectable through correlation among other five sequences where a PSNR of dB was measured. Furthermore, to test the robustness of the technique, the watermarked image was exposed to four types of attacks, namely compression, low pass filtering, salt and pepper noise and luminance change. In all cases the secondary watermark was easy to detect even when the primary one is severely distorted. To read the full-text of this research, you can request a copy directly from the authors.... However, malicious users can modify the original data easily by adding noises or shifting GPS points to avoid hashing-based data verification schemes, such as MD5. Moreover, the conventional ID embedding based verification schemes, which are widely used in protecting copyrights of images [13], audio [16], and videos [5], cannot be applied directly in trajectories for the following reasons. ...... The implementation of data distribution procedure is shown in Algorithm 1. It mainly consists of three stages transaction generation line 1-3, identity information embedding line [4][5][6][7][8][9][10][11], and data transmission line [12][13]. The bottleneck of the efficiency is the identity information embedding process. ...Trajectory data has been widely used in many urban applications. Sharing trajectory data with effective supervision is a vital task, as it contains private information of moving objects. However, malicious data users can modify trajectories in various ways to avoid data distribution tracking by the hashing-based data signatures, MD5. Moreover, the existing trajectory data protection scheme can only protect trajectories from either spatial or temporal modifications. Finally, so far there is no authoritative third party for trajectory data sharing process, as trajectory data is too sensitive. To this end, we propose a novel trajectory copyright protection scheme, which can protect trajectory data from comprehensive types of data modifications/attacks. Three main techniques are employed to effectively guarantee the robustness and comprehensiveness of the proposed data sharing scheme 1 the identity information is embedded distributively across a set of sub-trajectories partitioned based on the spatio-temporal regions; 2 the centroid distance of the sub-trajectories is served as a stable trajectory attribute to embed the information; and 3 the blockchain technique is used as a trusted third party to log all data transaction history for data distribution tracking in a decentralized manner. Extensive experiments were conducted based on two real-world trajectory datasets to demonstrate the effectiveness of our proposed scheme.... The watermark is then embedded in the transformed coefficients of the image such that the watermark is invisible and more robust for some image processing operations. Finally, the coefficients are inverse-transformed to obtain the watermarked image [4], [7]. ...... When one-level 2-D DWT is applied to an image, four transform coefficient sets are created. The four sets are LL, HL, LH, and HH, where the first letter corresponds to applying either a low pass or highpass filtering to the rows, and the second letter refers to the filter applied to the columns [4], [7]. The process of multiple frequency decomposition of one level is illustrated in wavelet analysis of an original image can divide image into an approximate image LL and three detail images LH, HL and HH., the approximate image hold most of the information of the original Image, while the others contain some details such as the edge and textures will be represented by large coefficients in the high frequency sub-bands [15]. ...... Eq. 11 shows an example of a 4×4 Hadamard matrix, which H 2 is obtained using 9 and 10. 2 1 1 ...... This result has the same with the values in 17. And the inverse WHT of X is obtained as follows 2,4,6]. The computation of FWHT algorithm can be illustrated in Fig. 1 [17]. ...... For instance, in 0, the authors proposed a dual watermarking technique in the DWT domain for intellectual property protection and authentication. In [3], a DCT-DWT approach is presented combining image authentication primary watermark and compression of color components secondary watermark. In [4], a JPEG2000-based approach is presented to protect content integrity by embedding a fragile and a robust watermark into different resolution layers and different embedding regions of a host image. ...... The aim is to allow admissible manipulations such as JPEG compression, but to reject malicious manipulations that change the visual content. Commonly used techniques extract features representing the image content and re-embed these features as watermark information into the host image data [3], [4], [7] [8] [9] [10] [11] [12]. Some approaches involve image positions of edges, contours or zerocrossings in the spatial domain whose existence is proved during the verification process. ...Mathias SchlauwegDima PröfrockBenedikt ZeibichErika MĂŒllerA digital watermarking approach highly robust to lossy image compression is presented. It is shown how geometrically warping objects can be used to imperceptibly embed information into images for the purpose of property rights protection. Common lossy image compression is optimized for maintaining the geo-metric image structure. Hence, as we demonstrate, the embedded information is not affected by a successive embedding approach in the compression domain. This second watermarking scheme is used for an efficient JPEG2000-based image authentication, which is robust to JPEG compression and other allowed signal processing operations. We enhance positive wavelet-based water-marking approaches proposed in recent years by image adaptive perceptual modeling and error correction coding without raising a security gap. Our new method is secure in contrast to most of the schemes proposed so far. Lots of popular features of the JPEG2000 compression framework such as quality and resolution scalability, lossless image rotation and flipping are supported. All coefficients of the wavelet decomposition are protected using our new extended scalar quantization and hashing scheme.... The watermark is then embedded in the transformed coefficients of the image such that the watermark is invisible and more robust for some image processing operations. Finally, the coefficients are inversetransformed to obtain the watermarked image [4], [7]. ...... When one-level 2-D DWT is applied to an Image, four transform coefficient sets are created. The four sets are LL, HL, LH, and HH, where the first letter corresponds to applying either a low pass frequency operation or highpass frequency operation to the rows, and the second letter refers to the filter applied to the columns [4], [7]. Which is shown in wavelet analysis of an original image can be divided into an approximate image LL and three detail images LH, HL and HH. , the approximate image hold most of the information of the original image, while the others contain some details such as the edge and textures will be represented by large coefficients in the high frequency sub-bands [15]. ...P Ramana Reddy Munaga V N K PrasadD. Sreenivasa RaoThe central idea of this paper is to develop an algorithm that embeds the watermark information without much distortion to the Image , while making it possible to extract the watermark by use of correlation. We begin by modifying the frequency coefficients of the Image, based on human visual systems perception of Image content, which is used to embed a watermark such that its amplitude is kept below the distortion sensitivity of the pixel and thus preserving the Image quality . The operation of embedding and extraction of the watermark is done in frequency domain , and it is checked for different noise attacks like salt and pepper and Gaussian. We spread spectrum technique for watermarking, such as pseudo random sequences enabling an easier generation, encryption and much better detection of the watermark .This water marking scheme deals with the extraction of the watermark information in the absence of original Image blind watermarking, also we make use correlation based watermark detection.... Evidently, this scenario is considered as an extension to the traditional single-watermark embedding schemes and exhibits minimal modifications with moderate security performance [6,13,28,34]. In the second, the fragile and robust watermarks are embedded sequentially in a dynamic manner [33,36,46,49]. However, the second embedding stage must not introduce a serious change to the former embedding. ... Hazem Munawer Al-OtumImage watermarking has been developed, recently, to meet the various concerns in multimedia copyright protection and forgery detection due to the explosive growth in multimedia sharing applications. In this work, a novel dual color image watermarking is developed for copyright protection, authentication and recovery applications. The proposed scheme is semifragile with three main pillars a the utilization of the WPT features for mark embedding by creating the so-called nested WPT trees, b the insertion of the optimizing stage, before embedding, to aid proper selection of the scheme parameters for both robust and fragile mark bits, and, c the development of the multi-level thresholding and selective quantization procedure that aims at modifying the nominated WPT locations only when required. Here, the input color image is split into its three color RGB triplets that are applied sequentially to WPT, then, nested trees that link the color triplets are created. Two watermarks are embedded into the obtained nested trees in a dual-watermarking approach. Here, the image digests are prepared, in the YCbCr domain, and used for recovery purposes. An optimizing procedure is developed to determine the proper locations, within each tree, for embedding of the digests for recovery purposes. At the extraction stage, the extracted robust mark bits are linked to the extracted authentication mark bits to construct the final extracted robust watermark, while the authentication mark bits are stepped forward to be used for authentication and recovery applications by mining the hidden image digest bits. Experimental results have shown that the proposed scheme has a high imperceptibility performance and could survive severe unintentional attacks. In case of intentional attacks, the scheme has shown a high forgery detection accuracy and recovery performance.... Image processing is defined as certain mathematical operations with the use of signal processing, where the input might be image, picture, image collection, video or photo frame, while image processing's output might be image or set of image-associated parameters or features [1][2][3]. A lot of image processing approaches involves view the images as two-dimesional 2D signal as well as utilizing standard approaches for signal processing. ...Information security is considered as one of the important issues in the information age used to preserve the secret information throughout transmissions in practical applications. With regard to image encryption, a lot of schemes related to information security were applied. Such approaches might be categorized into 2 domains; domain frequency and domain spatial. The presented work develops an encryption technique on the basis of conventional watermarking system with the use of singular value decomposition SVD, discrete cosine transform DCT, and discrete wavelet transform DWT together, the suggested DWT-DCT-SVD method has high robustness in comparison to the other conventional approaches and enhanced approach for having high robustness against Gaussian noise attacks with using denoising approach according to DWT. Mean square error MSE in addition to the peak signal-to-noise ratio PSNR specified the performance measures which are the base of this study's results, as they are showing that the algorithm utilized in this study has high robustness against Gaussian noise attacks.... The invisible watermark is used for protection/back up of the visible watermark. In [18], a dual watermarking technique based on DWT was done, a secondary watermark of PN sequence was embedded in the DWT domain of a primary watermark. ... Anu BajajDigital watermarking has become a promising research area to address the challenges faced by the rapid distribution of digital content over the internet. Secret message, logo or label is embedded into multimedia data such as text, image, audio, and video some imperceptibly for various applications like copyright protection, authentication, and tamper detection etc., known as watermarks. Based on the requirement of the application the watermark is extracted or detected by detection device. Digital watermarking gives a seamless interface to the users so that they may be capable of transparently utilizing protected multimedia as compared to traditional methods of security. In this paper, an outline of digital image watermarking and extensive/exhaustive survey of the various techniques used in the area of image watermarking is presented. Keywords— Digital Watermarking, Spatial domain, DCT, DWT, Arnold Transform, Contuorlet Transform, SVD. I. INTRODUCTION The internet has revolutionized many aspects of our lives. The use of information and communication technology ICT in day to day processes is continuously rising around the world. Therefore, it seems intuitive that applying internet use to provide real time coverage of stories, publishing newspapers, magazines, music, still images and enhanced video sequences would yield commercial benefits by providing a fast and inexpensive way to distribute their work. It becomes very easy to search and develop any digital content on the internet. But there is a serious problem faced about unauthorized and illegal access and manipulation of multimedia files over internet. Everybody can obtain copies of copyrighted multimedia openly at low cost and with no loss of information, for the commercial profit. That is so called intelligent property piracy. Digital watermarking has come to the attentions of many researchers to protect the Intellectual property rights of publishers, artists, distributers and photographers. Digital watermarking can be defined as to insert a secret message or logo into the original media source by using signal processing method. It provides a high level of security; as the location of embedded information is secret, and the watermark algorithm is also not public. Digital watermarking consists of watermarking structure, an embedding algorithm and extraction or detection algorithm. Generally, the effective and efficient watermarking scheme should satisfy certain properties to be reliable, such as imperceptibility, invisibility, unambiguity, low complexity, and either fragility or robustness, based on the watermarking application [2]. Also, digital watermarks should be difficult to remove or change without damaging the host signal. Watermarking is used for various applications viz. copyright protection, broadcast monitoring, authentication, fingerprinting. Watermarking techniques can be classified in various ways. Whether there is the need of the original image for watermark extraction or detection, watermarking is classified to blind, semi-blind and non-blind watermarking techniques. It can be classified on the basis of visibility of watermark, whether visible or invisible. On the basis of how the watermark be embedded in the image; either by changing the pixels spatial or by transformation domain. This paper is organized into six sections. The subsequent section briefly explains the watermarking system. Section III discuss about watermarking requirements and its applications. Section IV talk about the theoretical foundations of watermarking algorithms. Section V gives the comprehensive study of existing algorithms. And we conclude this paper in Section VI.... Watermarking is mainly used for copy protection and copyright-protection [4], [5]. For any watermarking technique to be valid, it must satisfy three important requirements perceptual invisibility, robustness against various image processing attacks, as well as security [6]. ... Ghassan MahmoodDigital watermarking is a technology to ensure and facilitate data authentication, security and copyright protection of digital media. In this paper, we employ a dual image watermarking and cryptography to achieve the requirements of robustness and security. In this method, the first watermark is encrypted by using a secret key and embedded it into the second watermark and then the result is embedded into the cover image. As well as we take some data from the cover image and add it to the second watermark to confirm the validity of the cover file and reliability of watermark. Also, we hide the secret key into the second watermark for more safety. Finally, experimental results reveal the effectiveness of the proposed method.... This transform is advantageous than the others transforms. Applying DWT on the digital image divides it into four non overlapping sub bands called LL, LH, HL and HH [13]. Coarse scale of DWT coefficients is represented by LL while fine scale coefficients are represented by LH, HL and HH sub bands. ...Sangeeta Yadav Priyanka AnandIn today’s world, a large number of data is available on the Internet. It is almost impossible to deal with numerous challenges like copyright protection, content identification, verification and authentication of digital data. Watermarking is a technique that is used all over the world to solve the issue of copyright protection. Digital watermarking is used due to its wide range of applications from copyright protection, protection of digital data, digital fingerprinting to author authentication to many more. This paper mainly deals with a different video watermarking technique based on frequency domain and their comparison is evaluated on the basis of Peak-Signal-To-Noise PSNR Ratio. This comparison is done in the MATLAB/Simulink which is an interactive tool for simulation purposes.... This technique proved to be more robust than the DCT method when embedded zero-tree wavelet compression and halftoning were performed on the watermarked images. Maha Sharkas et al. [11] Senior Members IEEE, proposed a dual digital image watermarking technique for improved protection and robustness. They applied frequency domain technique DWT into the primary watermark image and then embedded secondary watermark in the form of a PN sequence. ...... The watermark embedding procedure is depicted in followed by a detailed explanation [11][12][13][14] ...Encryption and watermarking are complementary lines of defense in protecting multimedia content. Recent watermarking techniques have therefore been developed independent from encryption techniques. In this paper, we present a hybrid image protection scheme to establish a relation between the data encryption key and the watermark. Prepositioned secret sharing allows the reconstruction of different encryption keys by communicating different activating shares for the same prepositioned information. Each activating share is used by the receivers to generate a fresh content decryption key. In the proposed scheme, the activating share is used to carry copyright or usage rights data. The bit stream that represents this data is also embedded in the content as a visual watermark. When the encryption key needs to change, the data source generates a new activating share, and encrypts the corresponding data with the key constructed from the new activating share. Before transmission, the encrypted data is embedded in a multimedia stream. Each receiver can extract the encrypted data from the host image, and decrypt this data after reconstructing the same key. Our presentation will include the application of the scheme to a test image, and a discussion on the data hiding capacity, watermark transparency, and robustness to common attacks. Keywords discrete cosine transform, discrete wavelet transform, and international data encryption algorithm IDEA, Bit correct ratio.... In [4], the dual watermark is a combination of a visible and an invisible one, curried out in a spatial domain. The scheme proposed in [5], the secondary watermark image is embedded in the wavelet domain of a primary watermark before being embedded in the host image. ... Huda NajiImage watermarking has become an important tool for intellectual property protection and authentication. In this paper a watermarking technique is suggested that two visible watermarks in a host image for improved protection and robustness. If one of watermarks is tampered , the other watermark be used as a back up . We propose three watermarking schemes called visible dual watermarking using wavelet transform two schemes are working in wavelet domain and the other is a mixture of spatial and wavelet domains .The Proposed watermarking method is robust against attacks like DCT , DWT and JPEG compression schemes ,and some geometric manipulation like image resizing .... For any watermarking technique to be valid, it must satisfy three important requirements namely perceptual invisibility, robustness against various image processing attacks, as well as security [4]. ...In this paper, a video watermark technique is proposed. The proposed technique depends on inserting invisible watermark in Low Frequency DCT domain using pseudo random number PN sequence generator for the video frames instead of high or mid band frequency components. This technique has been realized using Matlab and VHDL. The system has been implemented on Xilinx chip XC5VLX330T. The result of implementation shows that maximum frequency MHZ. The experimental and implementation results has been demonstrated and discussed.... In [2], authors highlighted that the invisible digital image watermarking can carry the significant information. Authors [3] discussed the algorithm to increase the robustness and protection. In paper [4], A. Essaouabi, E. Ibnelhaj, F. Regragui explained watermarking scheme that can embed a watermark to an arbitrarily shaped object in an image. ...paper gives the idea of the method digital image watermarking algorithm which is new popular topic for research. The Discrete wavelet is the tool used for digital image watermarking. Wavelet transform has been applied widely in watermarking research as its excellent multi- resolution analysis property. The watermark logo is embedded based on the frequency coefficients of the discrete wavelet transform. The detailed wavelet coefficients of high frequency band of the host image are altered by the watermark logo. The algorithm has been tested for different types of host images under the presence of attacks like Jpeg compression, bit planer reduction, cropping, warping etc. The watermark logo is added in the host image in frequency domain which gets spread over the whole part of the host image in time domain. The existing system is robust to provide the security.... The watermark extraction scheme is the inverse of embedding procedure. S. Maha et al.[5] proposes a wavelet based watermarking algorithm. Two watermarks are embedded. ...Embedding of the digital watermark in an electronic document proves to be a viable solution for the protection of copyright and for authentication. In this paper we proposed a watermarking scheme based on wavelet transform, genetic programming GP and Watson distortion control model for JPEG2000. To select the coefficients for watermark embedding image is first divided into 32×32 blocks. Discrete Wavelet Transform DWT of each block is obtained. Coefficients in LH, HL and HH subbands of each 32×32 block are selected based on the Just Noticeable Difference JND. Watermark is embedded by carefully chosen watermarking level. Choice of watermarking level is very important. The two important properties robustness and imperceptibility depends on good choice of watermarking level. GP is used to obtain mathematical function representing optimum watermarking level. The proposed scheme is tested and gives a good compromise between the robustness and study proposes a novel method for multipurpose image watermarking for both ownership verification and tampered region localization. Two watermarks robust and fragile are inserted into the host image. Robust watermark insertion is done by PSO particle swarm optimization optimized scaling of the singular values; utilizing the singular value decomposition SVD. Doing so, leads to reduction in visibility changes better imperceptibility of host image as well as enhanced performance of watermarked image towards attacks better robustness. Fragile watermark insertion is done by making use of SVD and chaotic sequence block feature’s dependent. The image is first divided into non overlapped blocks and block based Arnold transformed is performed. Then after, block grouping is done of scrambled blocks to breakdown their independence in order to sustain the vector quantization and collage attacks. The proposed scheme is tested against various signal processing attacks and results shows a good existing watermarking schemes usually have only a single function, a region-adaptive semi-fragile dual watermarking scheme is proposed, taking into account both watermark embedding capacity and security. The dual watermarks refer to the robust watermark and the fragile watermark. The original image is divided into three regions, a no watermark region, a fragile watermark region, and a robust watermark region, and, then, the interrelated robust and fragile watermarks are embedded into different regions. The robust and fragile watermarks do not relate to embedding order, and the extracted fragile watermark further strengthens the extracted robust watermark, which makes it more adaptable to the Human Visual System HVS. Different techniques have been developed to embed different types of watermarks. To increase the embedding capacity and achieve blind extraction, a status code technology was used to embed the robust watermark. To resist the erase attack and achieve blind extraction, a new special bit substitution technology is proposed to embed the fragile watermark. The experimental results show that the proposed dual watermark scheme has higher PSNR, better security, and larger capacity and also achieves the dual functions of copyright protection and integrity YangIn order to enhance the robustness of roust watermark technology, a zero-watermark technology is proposed based on discrete wavelet transformation DWT and singular value decompositionSVD. It conducts DWT with the original image, divides its low frequency band into blocks, and conducts SVD with every block. Zero-watermark is derived by judging the parity of the first digit of the biggest singular value in every block. Experiments show that it possesses strong robustness against various YangThe single watermark algorithms always merely have single function. In order to overcome the drawback, a multi-purpose dual watermark algorithm is proposed in the paper, taking advantage of the stability of singular values. It divides the original image into several blocks, and inserts robust watermark into their singular values. Then it inserts the fragile watermark into LSB in the space domain of previous watermarked image. Moreover, it designs a rule to distinguish malicious tamper from unintentional tamper. It tests not only robust watermark's robustness towards attacks, but also fragile watermark's influence towards robustness as well as the ability to tamper detection and localization. The experimental results show that the robust watermark possesses strong robustness to resist attacks, and that the fragile watermark is very sensitive to tamper and has good accuracy of tamper localization. Therefore it can achieveD. KannanM. GobiThe improvements in internet technologies and growing demands on online multimedia businesses have made digital copyrighting as a major challenge for businesses that are associated with online content distribution via diverse business models including pay-per-view, subscription, trading, etc. Copyright protection and evidence for rightful ownership are the major issues associated with the distribution of any digital images. Digital watermarking is a probable solution for digital content owners that offer security to the digital content. In recent years, digital watermarking plays a vital role in providing the apposite solution and numerous researches have been carried out. In this paper, an extensive review of the prevailing literature related to the image watermarking is presented together with classification by utilising an assortment of techniques. In addition, a terse introduction about the digital watermarking is presented to get acquainted with the vital information on the subject of digital massive spreading of broadband networks and new developments in digital technology has made ownership protection and authorisation of digital multimedia a very important issue. The reason is the availability of powerful tools for editing, lossless copying and transmission of digital multimedia such as images. Image watermarking is now an effective solution for the problem of authentication and protection of copyrighted image content. In this paper, discrete wavelet transform DWT-based watermarking technique is proposed in which mean energy of the each of 32 × 32 block in the CH and CV subbands is calculated and range of coefficients that exceed the mean energy of the block are selected for watermark embedding. Watson perceptual distortion control model is considered to keep the perceptual quality of the image and genetic programming GP is used to provide optimum watermarking level for the selected coefficients. The results show that there is almost no difference between original and watermarked image demonstrating key feature of imperceptibility. The technique has been tested and proves to be effective against a set of malicious attacks. Jobin AbrahamProposed image watermarking scheme embeds identification watermark in certain selected regions where modifications introduced during the process of watermarking is less sensitive to HVS Human Visual System. Edge detectors are used to estimate regions in the image where intensity changes rapidly. Modifications to such pixel will not attract the attention of human eyes. Watermark is thus integrated imperceptibly into the digital images. The proposed is a scheme for embedding a unique index number as watermark for content tracking and SarmaAmrita GangulyThe emerging interest in the field of digital watermarking is due to the increase in concern over copyright protection of digital information and prevention of unauthorized access and manipulation of digital data. In this paper, a new robust and blind digital image watermarking algorithm based on combined DCT-DWT transformation is proposed. The host image is decomposed into four subbands using the first level DWT and then second level DWT is performed on the HL subband. The two smaller sub bands of the HL sub band LH2 and HL2 are used to embed the watermark in order to enhance the security of the algorithm. Here, 8x8 DCT is carried out on these two subbands and the middle frequency coefficients of the DCT blocks are selected to embed the watermark. Experimental results show that the new algorithm provides high imperceptibility as well as high robustness against different attacks such as JPEG compression, Gaussian noise, Salt & Pepper noise, Speckle noise, Scaling property protection of digital images and multimedia is a prickly and largely unsolved problem. A highly robust biometric, dual watermarking technique using hand vein feature is proposed in this paper for securing digital images. In visible watermarking, the hand vein feature of an individual is embedded to the host image using Discrete Cosine Transform DCT in spatial domain. The invisible watermark is then EX-ORed with the bit planes of visible watermarked image. The hand vein biometric characteristic has been used to measure the identity of the recipient. This dual watermarking technique establishes owner's right to the NinSergio RicciardiDigital watermarking is the process of embedding information into a noise-tolerant digital signal such as image or audio data. Such information is embedded in a way difficult to be removed in order to easily identify relevant information for many different purposes, such as the copyright ownership of the media, source tracking, piracy deterrence, etc. There is an extensive literature about watermarking algorithms and methods as well as possible attack techniques. In this work we collect a part of this vast literature in order to make easier for a non-expert reader about watermarking to have a high-level overview on new trends and technologies related to multimedia watermark algorithms and late security problems related to smart cards have seen a significant rise and the risks of the attack are of deep concern for the industries. In this context, smart card industries try to overcome the anomaly by implementing various countermeasures. In this paper we discuss and present a powerful attack based on the vulnerability of the linker which could change the correct byte code into malicious one. During the attack, the linker interprets the instructions as tokens and are able to resolve them. Later we propose a countermeasure which scrambles the instructions of the method byte code with the Java Card Program Counter jpc. Without the knowledge of jpc used to decrypt the byte code, an attacker cannot execute any malicious byte code. By this way we propose security interoperability for different Java Card platforms. Hong ShenBo ChenWatermarking as a powerful technique for copyright protection, content verification, covert communication and so on, has been studied for years, and is drawing more and more attention recently. There are many situations in which embedding multiple watermarks in an image is desired. This paper proposes an effective approach to embed dual watermarks by extending the single watermarking algorithms in Xie and Shen 2005 [1] and Xie and Shen 2006 [2] for numerical and logo watermarking, respectively. Experimental results show that the resulting dual watermarking algorithms have a significantly higher PSNR than existing dual watermarking algorithms and also retain the same robustness as and higher sensitivity than the original single watermarking algorithms on which they are is a technique which consists in introducing a brand, the name or the logo of the author, in an image in order to protect it against illegal copy. The capacity of the existing watermark channel is often limited. We propose in this paper a new robust method which consists in adding the triangular matrix of the mark obtained after the Schur decomposition to the DCT transform of the host image. The unitary matrix acts as secret key for the extraction of the mark. Unlike most watermarking algorithms, the host image and the mark have the same size. The results show that our method is robust against attack techniques as JPEG compression, colors reducing, adding noise, filtering, cropping, low rotations, and histogram ZhangLi MaXiu-juan XingCurrently, robust, invisible double digital watermarking technology becomes the most popular and challenging direction, it has aroused great concern in the international community in recent years. The single watermark algorithms always merely have single function. In order to overcome the drawbacks, a multi-purpose dual watermark algorithm based on wavelet transform and image partition is presented in the paper. The algorithm embeds both robust watermark and fragile watermark to one video sequence by using DWT and multiple embedded methods. The later embedded fragile watermark is served for the early robust watermark. The experiment results show the proposed algorithm is more robust and imperceptible, and it can achieve copyright protection and content authentication at the same YeA robust zero-watermark algorithm is proposed, which is based on singular value decomposition and discreet cosine transform. The image is firstly spilt into non-overlapping blocks. Afterwards, every block is conducted with singular value decomposition, and its singular value matrix is transformed with discreet cosine transform. The robust zero-watermark sequence is derived from comparing the numerical relationship between two direct coefficients from adjacent blocks. Experimental results of robustness tests show that it has good robustness against various YeTwo robust zero-watermark algorithms in hybrid transform domains are proposed. The first one is realized in hybrid transform domains of discreet cosine transform DCT and singular value decomposition SVD, and the other one is realized in hybrid transform domains of discreet wavelet transform DWT, DCT and SVD. The first algorithm divides an image into non-overlapping blocks, transforms every block with DCT, and conducts SVD on the upper left corner of every block’s DCT matrix. Finally, it produces the zero-watermark sequence by judging the parity of norm’s highest digit. The second algorithm transforms an image with DWT, divides its LL band into non-overlapping blocks, and transforms every block with DCT, then conducts SVD on the upper left corner of every block’s DCT matrix. Finally, it produces the zero-watermark sequence by judging the parity of norm’s highest digit. It is easy to find out that both of them have perfect visual effect. Experimental results show that as to images with different textures, both of them have good robustness against various Yong-mei Ma LiXing Xiu-juanWang Kai-fenResearch of robust and invisible double digital watermark is one of the hot fields currently, and it has received considerable attention. To change the situation that many methods about watermarking are based on embedding one single watermark, a new double digital watermark algorithm on the basis of discrete cosine transformation and image blocks is presented. The algorithm embeds both robust watermark and fragile watermark to one video sequence by using DCT and multiple embedded methods. The later embedded fragile watermark is served for the early robust watermark. The experiment results verify the algorithm achieves better robustness and imperceptibility. Yanyou WuQianqian ShiKun WangYangjiao SongThe electrochemical approach coupled with Sb microelectrode was developed to determine the carbonic anhydrase activity in a wide range. The sensing response of the microelectrode had a good linear relationship between potential and pH value in barbital buffer. The temperature would not affect the linear relationship. During the determination, the open-circuit potential method was taken to monitor the whole course of the reversible conversion catalyzed by carbonic anhydrase, and then the initial part of uniform velocity from the reaction curve was chosen to calculate the reaction velocity the time to change one unit of pH. This technique, in comparison with the conventional method was used to determine the activities of bovine red blood cells carbonic anhydrase, foliar carbonic anhydrase and extracellular carbonic anhydrase in some plants. The result showed that the electrochemical approach coupled with Sb microelectrode would obtain more credible, accurate data than the conventional method. KeywordspH change–Carbonic anhydrase–Sb microelectrodes–Open-circuit potential OCPIn this chapter, a robust image watermarking algorithm in discrete wavelet transform DWT domain for stereo image coding is presented. First, a disparityimage is computed from the pair of stereo images using a frequency domain based matching criteria. Later, this disparity-image is used as a watermark and embedded into the left stereo image based on a modifying singular values concept. The strength of watermark is optimized using a real coded genetic algorithm to achieve the task of invisibility and robustness. The proposed scheme can achieve the following three main advantages. Any illegal user can not extract any information from the watermarked image since the host image is degraded using the ZIG-ZAG sequence. The second is that a legal user can retrieve the embedded watermark disparity-image and so able to recover 3-D information and right image of the stereo-pair. The third advantage is its robustness to the various attacks. Experimental results are presented to evaluate the performance of proposed algorithm in terms of accuracy and novel adaptive dual image watermarking technique is suggested and tested. The technique embeds a PN sequence which is the primary watermark into an image a secondary watermark and the resulting image is then embedded in the host image. The technique is implemented in the wavelet domain and the embedding factor alpha is first chosen arbitrary so as to improve the invisibility and robustness and then chosen adaptively depending on the energy content of the image to be watermarked in order to improve the performance. The technique is implemented on several gray scale images and then on several color images. The best achieved peak signal to noise ratio PSNR in case of gray scale images reached db whereas in color images it was YeZhaofeng MaXinxin NiuYixian YangThe copyright protection of digital content is one of the aims of digital right management DRM, among which digital watermarking is one of the key supporting technologies. This paper proposes a robust zero-watermark algorithm, which produces the zero-watermark sequence according to the parity of the first digit of the biggest singular value in every block. It essentially doesn't embed any watermark in the original image, thus the watermarked image is the same as its original counterpart. Experimental results show that it has good robustness against various attacks. Moreover, its computation is so low that it is easy to be applied into the practice of digital rights watermarking is a promising technique to help protect data security and intellectual property rights. In a digital watermarking scheme, it is not convenient to carry the original image all the time in order to detect the owner's signature from the watermarked image. Moreover, for those applications that require different watermark for different copies, it is preferred to utilize some kind of watermark independent algorithm in extraction does not need a priori knowledge of the watermark. In this paper we present a new hybrid watermarking scheme based on independent component analysis and the RGB decomposition. We present a novel strategic invisible approach for insertion-extraction of a digital watermark a color image, into color images. The novelty of our scheme makes use of Blind Source Separation model by manipulating the least significant levels of the blue channel so as not to bring about a perceptible change in the marked published machine vision algorithms are designed to be real-time and fully automatic with low computational complexity. These attributes are essential for applications such as stereo robotic vision. Motion Picture Digital Visual Effect facilities, however, have massive computation resources available and can afford human interaction to initialise algorithms and to guide them towards a good solution. On the other hand, motion pictures have significantly higher accuracy requirements and other unique challenges. Not all machine vision algorithms can readily be adapted to this environment. In this paper we outline the requirements of visual effects and indicate several challenges involved in using image processing and machine vision algorithms for stereo motion picture visual image watermarking is frequently used for many purposes, such as image authentication, fingerprinting, copyright protection, and tamper proofing. Imperceptibility and robustness are the watermark requirements of good watermarks. In this paper, we propose the Fast Walsh Hadamard transform FWHT combined with the Discrete Cosine Transform DCT as a new image watermarking scheme. The FWHT reorders the high-to-low sequence components contained in the signal. This scheme produces high perceptual transparency of the embedded watermark. Experimental results show that the proposed scheme has good visual perception and is robust against Chen Hong ShenXie and Shen improved Barni's basic pixelwise masking model and proposed a more robust wavelet-based watermarking algorithm against attacks including filtering, noise addition and compression. By extending their work, a new robust fragile double image watermarking algorithm is presented. Using the improved pixel-wise masking model and a new bit substitution based on pseudo-random sequence, our method embeds robust watermark and fragile watermark into the insensitive robust part and sensitive part of the wavelet coefficients of the host image respectively. This makes the two watermarks non-interfering and increases the watermarking capacity of the host image without reducing watermark robustness. Experimental results validated these desirable properties of the proposed method, and showed that our method has a higher PSNR than the existing double image watermarking schemes, while retaining the same robustness as the single watermarking MorganWe see the field of metareasoning to be the answer to many large organizational problems encountered when putting together an understandable cognitive architecture, capable of commonsense reasoning. In this paper we review the EM1 implementation of the Emotion Machine critic-selector architecture, as well as explain the current progress we have made in redesigning this first version implementation. For this purpose of redesign and large-scale implementation, we have written a novel programming language, Funk2, that focuses on efficient metareasoning and procedural reflection, the keystones of the critic-selector architecture. We present an argument for why the Funk2 programming language lends itself to easing the burden on programmers that prefer to not be restricted to strictly declarative programming paradigms by allowing the learning of critic and selector activation strengths by credit assignment through arbitrary procedural this paper we propose a DWT based dual watermarking technique wherein both blind and non-blindalgorithms are used for the copyright protection of the cover/host image and the watermark use the concept of embedding two watermarks into the cover image by actually embedding only one, toauthenticate the source image and protect the watermark simultaneously. Here the DWT coefficients of theprimary watermark logo are modified using another smaller secondary binary image sign and the midfrequencycoefficients of the cover/host image. Since the watermark has some features of host imageembedded in it, the security is increased two-fold and it also protects the watermark from any misuse orcopy attack. For this purpose a new pseudorandom generator based on the mathematical constant p hasbeen developed and used successfully in various stages of the algorithm. We have also proposed a newapproach of applying pseudo-randomness in selecting the watermark pixel values for embedding in thecover image. In all the existing techniques the randomness is incorporated in selecting the location toembed the watermark. This makes the embedding process more unpredictable. The cover image which iswatermarked with the signed-logo is subjected to various attacks like cropping, rotation, JPEGcompression, scaling and noising. From the results it has been found that it is very robust and has goodinvisibility as has not been able to resolve any references for this publication. Aboutthe Speakers. Meet the experts from global companies like Cloudera, Houzz, Pinterest, Spotify, Microsoft and more, who have built scalable streaming infrastructure and enterprise-grade applications. Hear why and how they use Flink as the stream processing engine of choice for large-scale stateful applications, including real-time In the modern era of virtual computers over the notional environment of computer networks, the protection of influential documents is a major concern. To bring out this motto, digital watermarking with biometric features plays a crucial part. It utilizes advanced technology of cuffing data into digital media, text, image, video, or audio files. The strategy of cuffing an image inside another image by applying biometric features namely signature and fingerprint using watermarking techniques is the key purpose of this study. To accomplish this, a combined watermarking strategy consisting of Discrete Wavelet Transform, Discrete Cosine Transform, and Singular Value Decomposition DWT-DCT-SVD is projected for authentication of image that is foolproof against attacks. Here, singular values of watermark1 fingerprint and watermark2 signature are obtained by applying DWT-DCT-SVD. Affixing both the singular values of watermarks, we acquire the transformed watermark. Later, the same is applied to cover image to extract the singular values. Then we add these values to the cover image and transformed watermark to obtain a final watermarked image containing both signature and fingerprint. To upgrade the reliability, sturdiness, and originality of the image, a fusion of watermarking techniques along with dual biometric features is exhibited. The experimental results conveyed that the proposed scheme achieved an average PSNR value of about 40 dB, an average SSIM value of and an embedded watermark resilient to various attacks in the watermarked IntroductionCopyright infringement has increased as a result of the rapid blooming of cyberspace and communication technology, which has led to an exchange of digital mixed media content. The transmission of digital data across public networks like the Internet makes the protection of personal information and intellectual property rights IPR crucial in the modern day [1]. Digital watermarking is a means to get around this problem and prove ownership of digital assets that are being used ease of multimedia content distribution is due to the fast development of the internet, multimedia technologies, communication, and reproduction. Multimedia data is prone to issues such as illegal copying and distribution pirating, editing, and copyright. In order to protect the data from the above-mentioned issues, digital watermarking is encrypted sort of coding called a digital watermark is added to a signal that can handle sounds, such as audio, video, or image data. Biometric systems have been using watermarking techniques to safeguard and authenticate biometric data and improve recognition accuracy in an effort to boost the trustworthiness of self-awareness systems that can be differentiated between a legitimate person and a fraudster. An encrypted sort of coding called a digital watermark is added to a signal that can handle sounds, such as audio, video, or image data. Biometric systems have been using watermarking techniques to safeguard and authenticate biometric data and improve recognition accuracy in an effort to boost the trustworthiness of self-awareness systems that can tell the difference between a legitimate person and a proposed work briefs on how to authenticate images by embedding biometric information into a digital image using a new hybrid system that includes three different algorithms namely DWT-DCT-SVD. In the embedding process, the cover image undergoes a DWT transform which decomposes it into four subbands, namely, L-L, L-H, H-L, and H-H, where L-L denotes Low-Low, L-H denotes Low-High, H-L denotes High-Low, H-H denotes High-High. L-L subband undergoes DCT transform to obtain 4 × 4 blocks. The DCT transform mainly compresses the data or image. The SVD of a matrix is an orthogonal transform used for matrix diagonalization to obtain singular values of the watermark. Subsequently, the SVD factors of each block are modified to create the watermarked image, extracted, and then inserted into the cover image. In the process of extraction, the watermarked image is acquired and a reverse stratagem is utilized to obtain the watermark, which is the biometric refers to the automatic identification of people based on their physiological and behavioral features; two authentications based on behavioral and physiological characteristics for attaching the watermark to the cover image are applied. Measurements taken from the human body are used in physiological biometrics, such as fingerprints, iris, face, retina. The dynamic measurements used in behavioral biometrics such as signatures, voice, and keystrokes, are based on human actions. The proposed hybrid watermarking system is cooperative integration of signature and fingerprint watermarks to cover image to assure the integrity, authenticity, and confidentiality of the digital documents. The embedding procedure consists of two steps in the projected method. First, the embedding of the signature in the fingerprint is carried out to create the transformed watermark, as shown in Figure 1. The final watermark is created by embedding the cover image in this extraction procedure is split into two steps. Step 1 extract the fingerprint from the watermark that results in an extracted fingerprint. Step 2 the signature is further extracted from the extracted fingerprint image, as shown in Figure Hybrid DWT-DCT-SVDThe proposed scheme consists of DWT, DCT, and SVD for image authentication that is robust against attacks. In the process of watermarking, two major steps are carried out viz., embedding and extraction. In this, the combinations of DWT, DCT, and SVD along with their inverses are applied. This hybrid technique is suitable for different image processing attacks by achieving the properties of watermarks, integrity, authenticity, and confidentiality of digitized image documents. The performance metrics used in this research are Peak Signal to Noise Ratio PSNR, Structural Similarity Index SSIM, and Normalized Correlation NC. This proposed methodology is deployed on dual watermarking where the embedding process consists of DWT, DCT, and SVD which provide image authentication and is robust against embedding process consists of DWT, DCT, and SVD watermarking techniques. To cover the image, one level of DWT is applied. Hence applied SVD to the L-L sub-band. Besides, the application of DWT to the biometric and then DCT followed by the SVD technique is carried out. Parallelly, SVD is applied to the signature. Application of SVD to the images results in three matrices namely U S and V. Considered the singular valued S matrix as it contains the diagonal properties of the image. Further, added the singular values of the biometric and alpha times of the signature. To recreate the L-L sub-hand of biometric the inverse of the SVD is applied. Later, we applied inverse DCT as we applied DCT in the earlier steps. Now we have applied inverse DWT to create an image with a modified L-L subband. This gives a results in the transformed watermark. Now apply the application of SVD to it in order to get a singular valued matrix. Next, to cover the image, singular values are added off and beta times singular matrix of the transformed watermark. Now apply the inverse SVD to recreate the cover image with manipulated singular values. Then followed by applying DCT and then DWT to create an image with a modified L-L subband. This gives a final watermarked image; this contains the signature and biometric embedded on the cover image, and this completes the embedded process. The extraction process for the transformed watermark biometric is done by applying DWT on the final watermark to obtain four subbands. Next, apply DCT to the L-L sub-band followed by SVD to obtain singular values of final watermarked image. Later, DWT is followed by DCT and then SVD to obtain signature images from the transformed image. This completes the extraction DCTWhen digital photos are uncompressed, they require a massive quantity of storage space. For such uncompressed data to be transmitted across the network, large transmission bandwidth is required. The most common image compression method is the Discrete Cosine Transform DCT [1]. The JPEG picture compression method makes use of DCT. The two-dimensional DCT is calculated for each block of the 8 × 8 or 16 × 16 divided input image. Following that, the DCT coefficients are quantized, encoded, and DCT can store the image with only fewer coefficients, and is used in lossy image compression to reduce the redundancy between neighboring pixels. The DCT formula with a 2D matrix is shown in equation 1.where the x, yth elements of the image element are represented by the matrix p as px, y. The block’s size, N, is used for the DCT. The pixel values of the native matrix of the image equation determine the value of one entry i, jth of the modified image. For the standard JPEG 8 × 8 blocks, N = 8 and x, y is in the stretch of 0 to DCT divides pictures into components with various frequencies. Because fewer significant frequencies are dropped during quantization in the compression portion, the term lossy is in use. Later, during the decompression phase, the image is retrieved using the remaining most crucial frequencies. As a result, some distortion is included in the reconstructed images; however, the levels of distortion can be altered during the compression stage. JPEG is used for both color and black and white photographs; however, the article focuses on the DWTThe suggested methodology incorporates the Discrete Wavelet Transform DWT [2] approach to withstand the attacks with a robust model. Low-Low, Low-High, High-Low, and High-High, L-L, L-H, H-L, and H-H are four subbands created by DWT HH. The original image will be recreated using the above four subbands. The image can theoretically be processed via the filter bank as shown in Figure 3 to produce various subband frequency illustrated in Figure 4, the L-L subband defines low-pass filtering for each row and column, resulting in a low-resolution approximation of the original image. Similarly, the L-H subband was created by applying low-pass filtering to each row and high-pass filtering to each column. The L-H subband is influenced by high-frequency features along the column direction. The H-L subband is the result of high-pass and low-pass filtering on each row and column. The H-L subband is influenced by high-frequency features along the row direction. The H-H subband is created by applying high-pass filtering to each row and column. The H-H subband is influenced by high-frequency features in the diagonal direction [3].DWT-Based Feature Extraction using multilevel decomposition of previously processed pictures, DWT effectively extracts discriminant characteristics that are impervious to arbitrary environmental fluctuations. The discrete interval wavelets are sampled for the wavelet transform known as the DWT. DWT provides information about the frequency and spatial domains of a picture simultaneously. An image can be studied using the DWT operation, which combines the analysis filter bank and decimation process. A 2D transform is created from two distinct 1D transformations. In 1D DWT, the approximation coefficients hold the low-frequency information, whereas the detail coefficients hold the high-frequency information. The input image is divided into four separate subbands by the application of 2D DWT low-frequency components in the horizontal and vertical directions cA, low-frequency components in the horizontal and high-frequency components in the vertical directions cV, high-frequency components in the horizontal and low-frequency components in the vertical directions cH, and high-frequency components in the horizontal and vertical directions cD. You can alternatively write cA, cV, cH, and cD as L-L, L-H, H-L, and H-H, SVDSingular value decomposition SVD [1, 4] is a method for approximating data matrix decomposition into an optimal approximation of the signal and noise components. This is one of the most essential aspects of the SVD decomposition in noise filtering, compression, and forensics, and it can also be viewed as a properly identifiable noise refactors into three matrices for the given digital image. To refactor the image singular values are used and at the end of this process storage space required by the image is reduced as the image is represented with a smaller set of values. The SVD of M × N matrix A is given by the following equation 2.where U M × N matrix of the orthonormal eigenvectors of AAT. 𝑉𝑇 Transpose of the n × n matrix containing the orthonormal eigenvectors of A^{T}A. W N × N diagonal matrix of the singular values which are the square roots of the eigenvalues of system can be divided into a number of linearly independent components, each of which contributes its own amount of energy, using the most efficient and stable technique known as orthogonal matrix columns U are referred to as the left singular vectors, whereas the orthogonal matrix columns V are referred to as the right singular vectors. The diagonal members are reflecting the singular values of the maximum energy packing of the SVD, the ability to solve the least squares issue, the ability to compute the pseudoinverse of a matrix, and multivariate analysis are all significant benefits for images [1, 5]. A crucial characteristic of SVD is its relationship to a matrix’s rank and its capacity to approximate matrices of a particular rank. Digital images can frequently be characterized by the sum of a relatively limited number of Eigen images since they are frequently represented by low-rank matrices. Images are compressed in compression, and SVD with the highest energy packing property is typically used. As previously established, SVD divides a matrix into orthogonal parts so that the best sub-rank approximations can be made [6, 7]. Truncated SVD transformation with rank r offers significant storage savings over storing the entire matrix with acceptable quality. The block diagram for the SVD-based compression is shown in Figure illumination data can be found in the singular value matrix produced by SVD. As a result, altering the single values will directly impact how the image is illuminated. As a result, the image’s other details won’t be altered. Second, by using the L-L subband illumination enhancement, the edge information in other subbands will be protected L-H, H-L, and H-H.The study [1] the research that is being offered displays an adaptive scaling factor based on particular DWT-DCT coefficients of its image material. The role of particular DWT-DCT coefficients relative to the average value of DWT-DCT coefficients was used to construct the adaptive scaling factor. Using a suggested set of guidelines that consider the adaptive scaling factor, the watermark image was integrated. The results of the experiments showed that the suggested method produced a high PSNR value of 47 dB, an SSIM value of around and an implanted watermark resistance to many attacks in the watermarked the integration procedure in the article [5], a discrete wavelet transform is applied to the image, and then the ZigZag scanning method is used to topologically reorganize the coefficients of the L-L subbands. The watermark bits are then integrated using the resulting coefficients. The integrity of the watermark may be easily confirmed thanks to an embedded hash of the electronic patient record. The experimental results show that the approach has high invisibility with a PSNR above 70 dB and very good robustness against a wide range of geometric and destructive attacks. The invisibility and robustness of the approach have been many of the currently used hybrid SVD-based picture watermarking systems is insecure, the study [4] primarily focuses on the analysis of the state-of-the-art in this area. Additionally, there aren’t many in-depth reviews in this field. In order to draw attention to numerous security risks, unresolved challenges, and research gaps, they conducted efficiency comparisons. Based on the results, this study gives researchers and practitioners important information they can use to improve the field of picture watermarking. It also gives suggestions for how to make more reliable schemes in the work [8] achieved a superior imperceptibility of dB, and demonstrates that watermarking may be included in a host image using various transform operations, including discrete cosine transform DCT, discrete wavelet transforms DWT, and singular value decomposition SVD. But not every design criterion is met at once by a single transformation. In order to close this gap, they developed a hybrid blind digital image watermarking technique using DCT, DWT, and SVD. This method was more robust than existing state-of-the-art techniques against filter, salt-and-pepper noise SPN, and rotation attacks. The WNC value for a median filter with various window sizes is 1, which is higher than the current well-known transforms—the discrete wavelet transform DWT, discrete cosine transform DCT, and singular value decomposition—are combined in the system in [6] SVD. By reaching greater values of imperceptibility in the form of PSNR with a value of decibels dB and SSIM with a value of experimental results show that the suggested technique exceeds the strategies already published in the literature. With a maximum NCC value of and a minimum BER value of it simultaneously achieves exceptional robustness ratings. The DWT-SVD performance suggested in the study [9] was verified throughout the training phase, and the suggested system’s high invisibility and resilience against different forms of attacks on watermarked photos were also demonstrated. When the suggested system’s findings were contrasted with those of other systems, it became clear that DWT-SVD performed better against pixel-value alteration suggested work in [10] illustrates a robust watermarking technique for grayscale photos using lifting wavelet transform and singular value decomposition as the basis for multiobjective artificial bee colony optimization. Here, the actual image is changed to four subbands using three levels of lifting wavelet transform, and then the watermark image’s singular value is merged with the original image’s unique value for the L-H subband. In order to achieve the highest possible robustness without compromising watermark clarity, multiple scaling factors are used in the embedding operation on behalf of the single scaling element. The results of the experiments show that the invisibility is very good and that it is resistant to a wide range of attacks that use image processing. A non-blind watermarking NBW schemes malfunction for watermarking stratagem thereby giving out to impart perpetually imperceptibility, depriving of robustness and competence for embedding. So, to tame this drawback, an algorithm for blind watermarking BW was proposed [11] to cover the glitches of impart safeguarding of copyright that has crucial demand for color images, an image-watermarking scheme deployed on sequence-based MRT SMRT was tendered for color images [12] where the principle goal was to detect preferable color space among the habitually pre-owned color spaces. A cascaded neural network approach deployed on two different neural network models was projected [13] by using an optimized feature-based digital watermarking algorithm. Here, the cascading of the neural network spawns the potent pattern for embedding. In the study [14], researchers tendered a strategy using watermarking technique of Fourier transform for color images where image will be declined into two variants where the image is segmented into R, G and B, sections where DFT is performed and these coefficients so obtained will use medium frequency band to encapsulate [15], which comprises of discrete wave transformation technique combined with Hessenberg decomposition HD and singular value decomposition SVD using scaling factor, watermark is embedded into the cover image. In [16], a watermarking algorithm of the color image is projected, where it explores the combination of DWT-DCT-SVD. Here the host image which is in RGB space is converted to YUV color space. Then a layer of DWT is put into the luminance component Y, followed by DCT and SVD to each block. The results are good enough to embrace the attacks and imperceptibility property of watermark. In [2, 3, 7, 17], some basic comparison of watermarking with steganography and a summary of different methods of image steganography is carried out. An effective DWT–SVD is deployed with self-adaptive differential evolution SDE algorithm for image watermarking scheme, SDE adjusts the mutation factor F and the crossover rate Cr dynamically in order to balance an individual’s exploration and exploitation capability for different evolving phases to achieve invisibility [18–20]. In [21–24], comparative analysis of image compression is done by three transform methods, which are Discrete Cosine Transform DCT, Discrete Wavelet Transform DWT and Hybrid DCT + DWT Transform, thereby achieving better invisibility property and good PSNR Proposed MethodologyThis proposed methodology is deployed on dual watermarking where the embedding process consists of DWT, DCT, and SVD which provide image authentication and is robust against attacks. Figure 6 depicts the embedding process that consists of DWT, DCT, and SVD watermarking techniques. The two watermarks used in the proposed methodology are biometrics and signature. These images are converted in grayscale because the SVD can only be applied to two-dimensional images whereas the color images are of three dimensions. Since the property of DWT after one level decomposition, the host image should be larger than the watermark. For the first embedding process, biometrics is the host image and the signature is the watermark. The biometric should be larger than the signature. Here, to the cover image one level of DWT is applied. Then the image is divided into four subbands, namely, L-L, L-H, H-L, and H-H. The major details and properties of the image are stored in the L-L subband. So, we contemplate embedding the biometric into the L-L subband. So, we have applied SVD to the L-L subband. Besides we have applied DWT to the biometric and then DCT and followed by SVD. Parallelly, we applied SVD to the signature, by applying SVD to the images we obtain three matrices namely U S and proposed methodology is divided into two steps Embedding Extraction Watermark Embedding AlgorithmThe Embedding algorithm can be split into two phases process of signature into biometric Step 1 Apply SVD to the signature to obtain the singular values SVS. Step 2 Apply DWT level-1 to the biometric to obtain 4-subbands. Step 3 Apply DCT to L-L subband in order to remove redundancy. Step 4 Apply SVD to the biometric to obtain singular values SVB. Step 5 Change the singular values of biometric SVB by adding the singular values of signature SVS. Step 6 The Transformed watermark TW is obtained by applying inverse SVD, DCT and process of Transformed watermark into Cover image Step 1 Apply DWT to cover image to obtain 4-subbands. Step 2 Apply DCT to L-L subband in order to remove redundancy. Step 3 Apply SVD to obtain the singular values of cover image SVC. Step 4 Manipulate the singular values of cover image SVC by adding the singular values of transformed image SVTW. Step 5 Obtain the final watermarked image by applying the inverse of SVD, DCT, and DWT techniques on the modified Extraction ProcessFigure 7 depicts the extraction process, which is the extraction of watermarks, biometric and signature from the cover image. The extraction is carried out as follows of Transformed watermark biometric Step 1 Apply DWT on the final watermark to obtain four subbands. Step 2 Apply DCT to L-L subband in order to remove redundancy. Step 3 Apply SVD to obtain the singular values of the final watermarked image SVFW. Step 4 To obtain the transformed watermark image, subtract the singular values of final watermarked image SVFW from the cover image singular values SVC. and divide the whole with the beta of signature watermark from transformed watermark biometric Step 1 Apply DWT on transformed watermark to obtain four subbands. Step 2 Apply DCT to L-L subband in order to remove redundancy. Step 3 Apply SVD to obtain the singular values of the transformed watermark. Step 4 To obtain a signature, subtract the singular values of transformed watermark SVTM from the biometric singular values SVB. and divide the whole with the alpha Experimental ResultsThe outcome of the projected technique discloses a hybrid combination of DWT-DCT-SVD that gives the best NC values along with good PSNR and SSIM. By applying DWT alone, the host image doesn’t withstand a few attacks. So, by introducing DCT, it has the ability to pack most of the information in the fewest coefficients thereby reducing the redundancy between the neighboring pixels. By using SVD, it makes it easier to hide the image. This combination works for all sorts of attacks and also gives better Figure 8, a watermarked image of size 512 × 512 has been subjected to various watermarking attacks, including Gaussian low-pass filter, Median, Salt and Pepper noise, Speckle noise, JPEG compression, Sharpening attack, Histogram equalization, Average filter, Gaussian noise, JPEG2000 compression, and Motion blur. It was robust against all of these attacks. Figure 9 shows an extracted fingerprint of size 256 × 256. When the cover image is subjected to various watermarking attacks such as Gaussian low-pass filter, Median, Salt and Pepper noise, Speckle noise, JPEG compression, Sharpening attack, Histogram equalization, Average filter, Gaussian noise, JPEG2000 compression, and Motion blur. It is resistant to all of these Figure 10, the cover image is subjected to various watermarking attacks, such as the Gaussian low-pass filter, Median, Salt and Pepper noise, Speckle noise, JPEG compression, sharpening attack, Histogram equalization, Average filter, Gaussian noise, JPEG2000 compression, and Motion blur, an extracted signature of size 128 × 128 is displayed. It resisted all of these attacks. The graph of SSIM versus scaling factor α is shown in Figure 11. This graph depicts the behavior of SSIM values for various α values. Each line on the graph represents a different attack, such as a Gaussian low-pass filter, a Median, Salt and Pepper noise, Speckle noise, JPEG compression, sharpening attack, histogram equalization, an average filter, Gaussian noise, JPEG2000 compression, and motion graph of NC versus scaling factor α is shown in Figure 12. This graph depicts the behavior of NC values for various α values. Each line on the graph represents a different attack, such as a Gaussian low-pass filter, a median, salt and pepper noise, speckle noise, JPEG compression, sharpening attack, histogram equalization, an average filter, Gaussian noise, JPEG2000 compression, and motion blur. Figures 13a and 13b show a graph of PSNR versus different scaling factors α or ÎČ. This graph shows the behavior of PSNR values for different α or ÎČ values. A Gaussian low-pass filter, a Median, Salt and Pepper noise, Speckle noise, JPEG compression, sharpening attack, Histogram equalization, an Average filter, Gaussian noise, JPEG2000 compression, and Motion blur are all represented by lines on the graph. Figure 14 depicts graphs of NC values under various parameters subjected to various attacks. Each line in the graphs represents a different image size, such as 512 × 512, 256 × 256, and 128 × 128. The X-axis parameters are a quality factor, compression ratio, sigma, window size, variance, and strength 1- Threshold. The graph varies depending on the type of attack used.a b Table 1 shows Normalized Correlation NC values for biometric NCB and signature NCS under different types of attacks. The achieved results show better NC values for all the test cases even after the extraction of watermarks biometric and signature.Table 2 details the invisibility imperceptibility property of the watermark of the proposed watermarking scheme for different types of images. It clearly shows that the proposed algorithm for all seven images showcases an average PSNR value of and an average SSIM value of 3 depicts Peak Signal to Noise Ratio PSNR values for biometric PSNRB and signature PSNRS under different types of attacks. In the above-mentioned test cases, the results acquired are with good PSNR values even after the extraction of watermarks biometric and signature.Table 4 depicts Structural Similarity Index Metrics SSIM values for biometric SSIMB and signature SSIMS under different types of attacks. For all the above-mentioned test cases, the results achieved are with good SSIM values even after the extraction of watermarks viz, biometric, and 5 shows the NC values of various watermarked images host image where the two watermarks biometric and signature are embedded. The NC values are good enough to achieve the property of imperceptibility of both the watermarks. The table details that the proposed scheme shows comparatively good results on Lena image for crop, salt & pepper, and speckle attacks. The proposed scheme shows results on other attacks such as rotation and scaling attacks. For peppers image, the proposed scheme shows similar results to the related work [1]. It can be depicted from Table 5 that the proposed methodology DWT-DCT-SVD shows comparatively good results for all the 15 different types of attacks on Lena and Pepper ConclusionThis study extends a watermarking stratagem deployed on both transform DCT-DWT and spatial SVD domain methods. Watermarked image implementation has good PSNR, NC, and SSIM due to DCT’s energy compaction property and DWT has a better compression ratio. The results show that the proposed method besides being protective against attacks, and deployed method improves performance without sacrificing image information. The robustness of the projected watermarking strategy was assessed by performing attacks such as added noise, filtering attacks, geometrical attacks, and compression attacks. The deployed method was validated with regard to the imperceptibility of the watermarked image. The deployed method exhibits the experimental results which achieved an average PSNR of 40 dB value, an NC value of and an SSIM value of approximately In the future, more enhanced embedding techniques may be deployed to improve the standard of watermarked images meanwhile taking the flaws into account. In the future, this method can be improved by combining it with other watermarking techniques that are more conscientious and resistant to attack. The proposed method can embed a watermark into standard digital media such as audio, text, zip archives, and video, as well as holograms and 3D vector objects. This work can be expanded to conceal user data and personal AvailabilityThe dataset used for the findings can be obtained from the corresponding author upon reasonable of InterestThe authors declare that there are no conflicts of interest regarding the publication of this © 2022 Bhargavi Mokashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Konstitusid alam arti yang paling luas berarti Hukum Tata Negara, yaitu keseluruan aturan dan ketentuan (hukum) yang menggambarkan sistem ketatanegaraan suatu negara. Contoh: istilah Contitutional Law dalam bahasa Inggris berarti Hukum Tata Negara. Dalam arti sempit, berarti Undang-Undang Dasar, yaitu satu atau beberapa dokumen yang memuat aturan AbstractFor authentication and copyright protection of handwritten document images, a dual watermarking algorithm that connects the robust watermarking algorithm based on Krawtchouk moments with a fragile watermarking algorithm based on MD5 hash function is presented. Hence, the robust watermarking algorithm is used to guarantee robustness by modifying frequency coefficients in Krawtchouk moments. Thus, this study proposes a fragile watermarking algorithm, which can perceive in time when the protected image is tampered. Experimental results show that the proposed algorithm can be used for copyright protection for JPEG compression attacks and tampering detection of this ReferencesArnol’d, Avez, A. Ergodic problems of classical mechanics. In The Mathematical Physics Monograph Series. W. A. Benjamin, New York 1968. E., Soria-Lorente, A. Watermarking based on Krawtchouk moments for handwritten document images. In HernĂĄndez Heredia, Y., MiliĂĄn NĂșñez, V., Ruiz Shulcloper, J. eds. IWAIPR 2018. LNCS, vol. 11047, pp. 122–129. Springer, Cham 2018. Google Scholar Chen, B., Wornell, Quantization index modulation a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 474, 1423–1443 2001CrossRef MathSciNet Google Scholar Fischer, A., Frinken, V., FornĂ©s, A., Bunke, H. Transcription alignment of Latin manuscripts using hidden Markov models. In Proceedings of the 2011 Workshop on Historical Document Imaging and Processing, pp. 29–36. ACM 2011 Google Scholar Fischer, A., et al. Automatic transcription of handwritten medieval documents. In 2009 15th International Conference on Virtual Systems and Multimedia, pp. 137–142. IEEE 2009 Google Scholar Liu, Lin, Yuan, Blind dual watermarking for color images’ authentication and copyright protection. IEEE Trans. Circ. Syst. Video Technol. 285, 1047–1055 2018CrossRef Google Scholar Mohanty, Ramakrishnan, K., Kankanhalli, M. A dual watermarking technique for images. In Proceedings of the Seventh ACM International Conference on Multimedia Part 2, pp. 49–51. Citeseer 1999 Google Scholar Pastor-Pellicer, J., Afzal, Liwicki, M., Castro-Bleda, Complete system for text line extraction using convolutional neural networks and watershed transform. In 2016 12th IAPR Workshop on Document Analysis Systems DAS, pp. 30–35. IEEE 2016 Google Scholar Shivani, S., Singh, P., Agarwal, S. A dual watermarking scheme for ownership verification and pixel level authentication. In Proceedings of the 9th International Conference on Computer and Automation Engineering, pp. 131–135. ACM 2017 Google Scholar Singh, A. Robust and distortion control dual watermarking in LWT domain using DCT and error correction code for color medical image. Multimed. Tools Appl. 1–11 2019 Google Scholar Singh, Shaw, A hybrid concept of cryptography and dual watermarking LSB\\_\DCT for data security. Int. J. Inf. Secur. Priv. IJISP 121, 1–12 2018CrossRef Google Scholar Wang, N., Li, Z., Cheng, X., Chen, Y. Dual watermarking algorithm based on singular value decomposition and compressive sensing. In 2017 IEEE 17th International Conference on Communication Technology ICCT, pp. 1763–1767. IEEE 2017 Google Scholar Yap, P., Paramesran, R., Ong, Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 1211, 1367–1377 2003CrossRef MathSciNet Google Scholar Download references Author informationAuthors and AffiliationsUniversidad de Granma, Carretera Central vĂ­a HolguĂ­n Km 1/2, Bayamo, Granma, CubaErnesto Avila-Domenech & Anier Soria-LorenteUniversidad Central “Marta Abreu” de Las Villas, Santa Clara, Villa Clara, CubaAlberto Taboada-CrispiAuthorsErnesto Avila-DomenechYou can also search for this author in PubMed Google ScholarAnier Soria-LorenteYou can also search for this author in PubMed Google ScholarAlberto Taboada-CrispiYou can also search for this author in PubMed Google ScholarCorresponding authorCorrespondence to Ernesto Avila-Domenech . Editor informationEditors and AffiliationsUppsala University, Uppsala, SwedenIngela NyströmUniversity of Information Science, Havana, CubaYanio HernĂĄndez HerediaUniversity of Information Science, Havana, CubaVladimir MiliĂĄn NĂșñez Rights and permissions Copyright information© 2019 Springer Nature Switzerland AG About this paperCite this paperAvila-Domenech, E., Soria-Lorente, A., Taboada-Crispi, A. 2019. Dual Watermarking for Handwritten Document Image Authentication and Copyright Protection for JPEG Compression Attacks. In Nyström, I., HernĂĄndez Heredia, Y., MiliĂĄn NĂșñez, V. eds Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2019. Lecture Notes in Computer Science, vol 11896. Springer, Cham. 22 October 2019 Publisher Name Springer, Cham Print ISBN 978-3-030-33903-6 Online ISBN 978-3-030-33904-3eBook Packages Computer ScienceComputer Science R0
Thisis a free online web tool. It can split your video files. Provide 4 kinds of splitting methods: free splitting, average splitting, splitting by time, splitting by file size. With HTML5 technology, you don't need to install software or upload video files, just complete the split in the browser. Choose a file or. Drag file here. Free Split.

I have seen in many Android mobile phones specially Chinese brands, whenever you take a photo using the built-in stock Camera app, a “Shot on” watermark is automatically added to the bottom-left corner of the image. The watermark shows mobile phone company name and sometimes the model name as well. Many smartphone manufacturer companies apply this automatic watermark on all photos to promote their brand name and mobile phone model. In most of these mobile phones, the watermark option is enabled by default and the phone automatically puts watermark on all photos taken by the user. In some mobile phones, the watermark also shows user information such as name if set by the user. Personally I don’t like these watermarks on photos. I want a perfect shot not cluttered by watermark and phone information. Many times readers ask me how to get rid of this annoying watermark on photos shot on their mobile phones. Thankfully there is a way to disable or remove the watermark on photos in Google Android mobile phones. The Camera app allows users to show or hide watermark on photos and users can turn on or off watermark feature according to their requirements. If you are also using a smartphone and you want to disable watermark on photos taken by Camera app, this tutorial will help you. Also if your phone supports watermark feature but doesn’t add watermark automatically on photos, this tutorial will help you in adding watermarks on all photos. This tutorial will apply to all Android mobile phones which support watermark feature such as OnePlus, Xiaomi Redmi Poco, Gionee, Vivo, Oppo Realme, etc. It’ll also work on 3rd party Camera apps downloaded from Google Play Store which also support watermark feature. Check out following steps to add or remove watermarks on Camera photos in your Android mobile phones 1. First of all open Camera app in your mobile phone. 2. Now open Settings or Options in your Camera app. In some mobile phones, the Settings or Options icon Cog wheel icon is present at the top-right corner in Camera app. In some mobile phones, you need to swipe from left or bottom to access Camera Settings or Options icon. 3. Once you open Settings or Options page in Camera app, look for Watermark option. Generally its labelled as “Shot on watermark”, “Photo watermark”, “Camera watermark”, “Dual camera watermark”, etc. To disable or remove watermark on photos, set the toggle button given for watermark option to OFF. To add and show watermark on photos, set the toggle button given for watermark option to ON. That’s it. Now your mobile phone will always show or hide watermark on all photos shot by the Camera app based on the option value set by the user. Also Check [Fix] Brightness Increases to Maximum When Opening Camera App in Android Mobile Phone You are here Home » Mobiles and Internet » [Tip] Disable or Remove Watermarks on Camera Photos in Android Mobile Phones

adXX44.
  • xclc2o72pk.pages.dev/241
  • xclc2o72pk.pages.dev/400
  • xclc2o72pk.pages.dev/195
  • xclc2o72pk.pages.dev/123
  • xclc2o72pk.pages.dev/205
  • xclc2o72pk.pages.dev/27
  • xclc2o72pk.pages.dev/66
  • xclc2o72pk.pages.dev/283
  • arti watermark dual camera